Как рассчитать нагрузочный резистор для блока питания

Обновлено: 07.07.2024

Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.

По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.

На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.

Электронная нагрузка для блока питания

Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.

Электронная нагрузка для блока питания

Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.

Электронная нагрузка для блока питания

С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.

Электронная нагрузка для блока питания

Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.

Радиодетали для сборки

  • Транзистор Т1 TIP41, MJE13009, КТ819
  • Транзисторы Т2, Т3, Т4, Т5 TIP36C
  • Стабилизатор напряжения L7812CV
  • Конденсатор С1 1000 мкФ 35В
  • Диоды 1N4007
  • Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
  • Радиаторы 4 шт. размер 100х63х33 мм
  • Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
  • Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания

romanici1

Вы публикуете как гость. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Объявления

Михайлик

Что значит "куда"? Все очень просто: надо опять тщательно осмотреть плату, по внешним признакам определить неисправные детали и заменить их на исправные. Когда все неисправные детали будут заменены, все должно заработать.

@Andrey 69 Ничего нового и удивительного: - Лес продают в обход закона - А в Украине. - Лес горит уже полгода и нет помощи - А в Америке.

MCU не должен греться, от слова "вообще". Спекся. Или питание завышено, или по портам "треснуло". Других причин нет.

Black-мур

Dr. West

Я бы эти селеновые выпрямители выкинул нафиг, поставил нормальные диоды и собрал схему регулировки, например, на тиристоре из соседней темы.

Алебастр

С ответом Кадырову можно ещё проще: "В России все нации равны. Поэтому, когда трое русских отметелят до полусмерти чеченца, заступившегося за чеченку в транспорте города Грозного, то Кадыров также будет вправе огласить национальность преступников."


В качестве самой просто схемы я покажу вариант с одним диодом и конденсатором. Такая схема используется в обратноходовых блоках питания, которые составляют сейчас подавляющее большинство.


В готовом блоке питания она выглядит так, как показано на этом фото.
Такие блоки питания чаще всего идут в комплекте с недорогой техникой.


Следующим шагом идет двухполупериодный выпрямитель. Эта схема использовал раньше весьма часто, но в последнее время вытеснена другой, которую я покажу позже.
Такая схемотехника чаще всего встречается в мощных блоках питания, особенно она удобна в нерегулируемых блоках на базе драйвера IR2151-2153, о которых я рассказывал в прошлой части.


Как я тогда сказал, она хорошо подходит для построения первичных источников питания, которые не являются стабилизированными, но которые имеют хороший КПД и могут использовать для питания других устройств, например как этот блок питания лабораторного источника питания.


Особое преимущество данной схемы в том, что ее очень легко переделать в двухполярную и использовать для питания усилителей мощности. В таком варианте добавляется всего пара диодов и конденсатор.


Когда мощности обратноходовой схемотехники не хватает, то используют ее прямоходовый вариант. Здесь энергия при одном такте сначала накапливается в дросселе, а потом через нижний диод поступает в нагрузку. Данная схемотехника очень похожа на схему классического StepDown преобразователя.


Заметить что блок питания собран по такой схемотехнике очень просто, на плате будет большой дроссель. В качестве фильтрующих дроссели с таким габаритом используют крайне редко, потому ошибиться сложно.


Но есть альтернативный вариант этой схемы. Он применяется чаще всего в компьютерных блоках питания и ведет свои истоки от первых БП формата АТ.


Здесь присутствует накопительный дроссель, а первичная обмотка силового трансформатора связана с одной из обмоток трансформатора управления. Если изъять дроссель из этой схемы, то блок питания при нагрузке выше определенной выйдет из строя.
То же самое касается и предыдущей схемы.


Отличить блоки питания последних двух типов очень легко, слева БП построенный по аналогии блока питания АТ формата, у него сразу заметен трансформатор около транзисторов, справа однотактный прямоходовый, трансформатора здесь нет.
Дроссели имеют разные размеры, но это следствие разной рабочей частоты и иногда экономии производителя. Меньший дроссель в работе скорее всего будет перегреваться, да и схема можно работать не очень надежно при максимальной мощности.

Чаще всего в качестве выходных диодов импульсных блоков питания используются диоды Шоттки. Они имеют два важных преимущества перед обычными:
1. Падение напряжения на них в 1.5-2 раза меньше
2. Они быстрее, чем обычные диоды, потому имеют меньше потер при переключении.


В блоках питания рассчитанных на высокое выходное напряжение применяют чаще всего обычные диоды, так как прямое падение у высоковольтных обычных и Шоттки примерно одинаково. Но из-за того что Шоттки быстрее, можно получить уменьшенные потери на снаббере, потому я советую применять их и здесь.


Так как после выпрямления на конденсаторе будут присутствовать заметные пульсации, то после него ставят LC фильтр или говоря простым языком - дроссель и конденсатор


Для примера "народный" блок питания где явно виден как дроссель, так и два конденсатора.


Дроссель необязательно будет большим, а вполне может быть совсем миниатюрным. Работать правда он будет хуже, но это лучше чем ничего.


Иногда дроссель вообще не ставят, хотя место под него есть. Это банальная экономия "на спичках", я всегда рекомендую установить на это место дроссель.


Для примера уровень пульсаций без дросселя и с дросселем. Но стоит учитывать, что после установки дросселя пульсации на первом конденсаторе вырастут, так как на него будет приходится "ударный" ток. Обычно именно он выходит из строя первым.


Улучшить ситуацию можно установив параллельно электролитическим конденсаторам керамические. Данная мера можно существенно облегчить режим работы электролитов. Но стоит иметь в виду, что эффективно они работают только при относительно небольших мощностях БП, а точнее при относительно небольших токах. Можно конечно поставить много таких конденсаторов, но это дорого и габаритно.


При доработке конденсаторы можно напаивать прямо на выводы электролитических конденсаторов.
Я применяю конденсаторы с емкостью 0.1-0.47мкФ.


Чтобы еще немного улучшить качество работы, следует внимательнее отнестись к разводке печатной платы. Если страссировать плату по типу того как я показал на схеме, то пульсации могут еще немного уменьшиться, тем более что это бесплатно.


Ну и последний шаг, установка синфазного дросселя на выходе блока питания. Такое применяется чаще всего в фирменных блоках питания, которым требуется проходить сертификацию на уровень помех излучаемых в эфир. В дешевых практически никогда не встречается.


Теперь об выходных конденсаторах.
Если вы пользуетесь дешевыми блоками питания, то скорее всего на выходе увидите либо вообще безымянные модели.


Но все равно, лучше применять именно фирменные конденсаторы, а не суррогаты с их именем. На фото блок питания фирмы Менвелл.


Для облегчения работы конденсаторов есть способ, когда вместо одного двух емких устанавливают много менее емких конденсаторов. В таком варианте нагрузка лучше распределяется и конденсаторы живут дольше.


Схема стабилизации.
Самый простой вариант - стабилизировать напряжение по обратной связи со вспомогательной обмотки трансформатора, правда такое решение и самое плохое в плане стабильности, так как влияет магнитная связь между обмотками и их активное сопротивление, зато дешево.


Следующий вариант сложнее, здесь в качестве порогового элемента применен стабилитрон. В таком варианте выходное напряжение Бп будет равно падению на стабилитроне + напряжению на светодиоде оптрона. Характеристики схемы так себе, но вполне приемлемы для некритичных нагрузок.


Например блок питания с такой стабилизацией. Сверху около оптрона ничего нет.


Снизу расположен стабилитрон и несколько резисторов


Но куда лучшие характеристики показывает схема с регулируемым стабилитроном TL431. Она имеет куда выше качество работы и точность поддержания в том числе лучше держит параметры при изменении температуры.


На плате она обычно выглядит так, как показано на фото.


Расположение выводов в разных вариантах корпуса.


Например в "народном" блоке питания применен SMD вариант корпуса. На фото видны резисторы делителя обратной связи и вспомогательные, например "подтяжки" к питанию чтобы сформировать минимальный рабочий ток для стабилитрона.

Еще пара фото, сверху платы ничего нет, а стабилитрон TL431 находится снизу.


Иногда в цепи обратной связи ставят подстроечный резистор. Но сначала я скажу пару слов о том, как рассчитывается делитель.
Если применяется стандартный делитель из двух резисторов, то его номиналы подбираются таким образом чтобы при требуемом выходном напряжении в точке соединения было 2.5 Вольта, именно на это напряжение и рассчитана TL431, но стоит учитывать, что есть и более низковольтный вариант этой микросхемы, на 1.25 Вольта, хотя встречается он гораздо реже.
Теперь к подстроечному резистору. Для большего удобства на плате может располагаться подстроечный резистор, позволяющий менять выходное напряжение в небольших пределах, чаще всего +/- 10-20%, больший диапазон не рекомендуется, так как Бп может вести себя нестабильно.
Подстроечный резистор всегда должен стоять последовательно с нижним резистором делителя, тогда в случае выхода его из строя вы получите на выходе Бп минимальное напряжение, а не максимальное, как если бы подстроечный резистор стоял сверху.
Кроме того подстроечные резисторы часто имеют низкую надежность, и если вам не нужна эта функция, то лучше заменить его на постоянный, предварительно подобрав его номинал.


Полностью на плате весь этот узел выглядит следующим образом.


Пару слов о выходном нагрузочном резисторе.
Импульсный блок питания плохо работает без нагрузки, потому параллельно выходу обычно ставят нагрузочный резистор, обеспечивающий минимально необходимую нагрузку при которой БП работает стабильно.
Есть и минус у данного решения, резистор обычно греется, причем иногда заметно. Кроме того этот резистор может греть конденсаторы если они стоят рядом, как на этом фото.


Иногда они греются так, что на плате становятся видны следы перегрева. Но кроме того этот нагрев может плохо сказываться на стабильности БП если он подогревает резисторы делителя обратной связи и они при этом применены обычного типа, а не точные/термостабильные.
Резисторы греются, параметры начинают меняться и меняется выходное напряжение БП, потому рекомендуется располагать резисторы делителя так, чтобы они не были подвержены нагреву, а кроме того лучше применять точные резисторы, на которые нагрев влияет существенно меньше.


Иногда производители неправильно выбирают номинал нагрузочного резистора и он начинает греться сильнее чем допустимо. Например в 24 Вольте версии "народного" блока питания как раз была такая ситуация, пришлось поменять его потом на резистор в два раза большего номинала.


Чтобы ваши блоки питания работали надежно, следует внимательно отнесись к подбору компонентов.
Диоды выбираются из расчета двухкратного запаса для двухтактной схемы и трехкратного для однотактной, например БП 5-7 Ампер, значит диод ставим на 15-20.
Напряжение должно быть не менее чем в четыре раза больше чем выходное у блока питания, если БП на 12 Вольт, то диод на 60, если на 24, то на 100.
Все эти параметры есть в даташите на диоды


Также они указаны на самих диодах.


Конденсаторы следует выбирать низкоимпедансные или LowESR, это также обычно отражено в даташите на компонент.
Емкость выбираем из расчета 0.5-1 тысяч мкФ на 1 Ампер выходного тока. Напряжение - для двухтактной схемы 1.5-2 раза выше чем выходное, для обратноходовой однотактной - не менее чем 2х от выходного.

По фирмам смотрим чтобы были известные бренды, но это я писал и в статье про входной фильтр, здесь рекомендации аналогичны.





С выходным дросселем все гораздо проще, номинальный ток дросселя не менее чем максимальный выходной ток блока питания. Лучше применить дроссель на больший ток, тогда его нагрев будет существенно меньше. Индуктивность 4.7-22мкГн, зависит от выходного тока, так как дроссель на большой ток и индуктивность будет весьма большим.

Обычно дроссели выполняются либо в виде "гантельки", либо в "броневом" исполнении, вторые чаще предназначены для поверхностного монтажа.

В общих чертах на этом все, и конечно видеоверсия данной статьи. Как всегда буду рад вопросам и пожеланиям.

Эту страницу нашли, когда искали:
импульсный бп с обратной связью , какой стоять должен резистор на выходном каскаде блока питания на питание схемы , на китайской зарядке диод шоттки греется , на выход импульсного транса бп повесить схему диод ,конденсатор ,индуктивность и вывести проводок к потребителю , синий диод в блоке питания , импульсный блок питания без обратной связи , ka7500b схема включения , нагрузочный резистор фильтра нужен для , переменные резисторы в компьютерном бп , обратная связь блока питания на конденсаторе , зачем в блоке питания диод шоттки , резистор 60 ком в блоке питания , схемы выпрямления вторичных напряжений в импульсном блоке питания , в диммерах на входе синий элемент и жёлтый фильтр перед диодным мостом , сопротивление в блоке питания вихрь , зачем на выходе блока питания ставят индукционные катушки , сдвоенные диоды на выходе блока питания , обратная связь у полевака блока питания , выходные обмотки ибп обратноходового , совместно с транзистором 47n60c3 , диодом 1n5408 в блоке питания используется диод , фильтрация выходного тока трансформатора схема , почему в схемах бп вместо диода шоттки стоит стабилизатор , расчет фильтра tl431 , борьба с помехами во вторичных цепях импульсных источников питания , импульсный бп ступенька на выходном напряжении

Расчет мощности нагрузочного резистора для правильной работы светодиодных ламп.

Нагрузочный резистор для светодиодных ламп


После установки новых полностью светодиодных задних фонарей на Лансер 10, перестал работать круиз-контроль.

А все дело в том, так как данные задние фонари полностью светодиодные, то электроника автомобиля думает, якобы лампы в стопах перегорели и из-за этого перестает работать круиз-контроль.

Также на якобы перегоревшие лампы в стопах ругается система курсовой устойчивости, информируя об этом ошибкой на приборной панели.

Для вашего удобства, данная инструкция будет в текстовом и видео формате.

Почему появляется ошибка при установке светодиодных ламп

Проблема эта распространенная и присутствует на большинстве другой альтернативной оптике. А также в случае если вы установите светодиодные лампы в штатные задние фонари (в стопы или поворотники).

Так как светодиодные лампы в разы меньше по мощности, чем лампы накаливания, автомобиль думает, что якобы лампа в стопах или поворотниках перегорела и ошибкой информирует водителя о ее замене.

Нагрузочный резистор для светодиодных ламп

Решение данной проблемы простое, необходимо установить нагрузочный резистор.

Как рассчитать мощность, ток и сопротивление нагрузочного резистора

На Mitsubishi Лансер 10, как и на большинстве автомобилях, стандартная лампа накаливания в стопах мощностью 21 ватт (W).


Нагрузочный резистор для светодиодных ламп

В новых светодиодных фонарях, установлены светодиодные лампы мощностью 8.1 ватт.

Рассчитываем мощность нагрузочного резистора

13W, это необходимая мощность нагрузочного резистора, чтобы исчезла ошибка на автомобиле. Но лучше ставить более мощный резистор, например на 25 или 50 ватт, так он будет намного меньше греться.

А если вы устанавливайте светодиодную лампу в поворотники, то рассчитывать надо общую мощность по левой или правой стороне.

Например, с левой стороны лампа накаливания поворотников потребляет 21W, лампа в крыле 5W, лампы в заднем фонаре 21W. Общая мощность получается 21W + 5W + 21W = 47W.

И вы решили установить в задний фонарь светодиодную лампу мощностью 12W, общая мощность по левой стороне в таком случае получится: 21W + 5W + 12W = 38W.

Нагрузочный резистор для светодиодных ламп

И теперь от 47W - 38W = 9W - это необходимая мощность нагрузочного резистора. Но лучше ставить более мощный резистор, например на 25 или 50 ватт, так он будет намного меньше греться.

И важно понимать, что например при установке 50 W резистора, это его мощность не за единицу времени, а максимальное количество мощности, которое он может рассеять. Чем мощнее резистор, тем меньше он будет греться.

Рассчитываем ток нагрузочного резистора

Нагрузочный резистор для светодиодных ламп

Далее необходимо вычислить ток, который должен течь через резистор. Делим мощность лампы накаливания на напряжение в сети автомобиля: 21W / 12V = 1.75 А.

Рассчитываем сопротивление нагрузочного резистора

И теперь с помощью закона Ома можем вычислить сопротивление нагрузочного резистора, для этого напряжение в сети автомобиля делим на ток, который должен течь через нагрузочный резистор: 12V / 1.75А = 6,86 Ом.

Нагрузочный резистор для светодиодных ламп

Таком образом, чтобы автомобиль перестал ругаться на светодиодные лампы и исчезла ошибка, необходимо подключить нагрузочный резистор мощностью 25 или 50 ватт с сопротивлением 6,86 Ом.

Нагрузочный резистор для светодиодных ламп

Подключается нагрузочный резистор параллельно к минусу и плюсу стопа или поворотника. Полярности у резистора нет, подключать можно с любой стороны.

Нагрузочный резистор подключал к проводам с помощью зажимных клемм, покупал на Aliexspress.

Нагрузочный резистор для светодиодных ламп

Далее я протестировал стопы с подключенными нагрузочными резисторами. Стопы были непрерывно включены на 12 минут, и в итоге нагрелись резисторы до 34 градусов, что является очень хорошим результатом. Можно в принципе установить и на 25W.

Крепить нагрузочные резисторы можно двусторонний скотч или стяжки.

А если они в вашем случае разогреваются свыше 50 градусов, то лучше из крепить к кузову на теплопроводящий скотч для отвода тепла.

Видео подключения нагрузочного резистора

LED противотуманные фары на Лансер 10 (на рестайлинг)

Новые светодиодные задние фонари на Лансер 10

Светодиодные задние фонари на Лансер 10

Светодиодный отражатель в задний бампер на Лансер 10

Светодиодный отражатель в задний бампер на Лансер 10

Светодиодные динамические поворотники на Лансер 10

Светодиодные динамические поворотники на Лансер 10

Установка круиз-контроля на Лансер 10


Подсветка зеркал солнцезащитных козырьков

Крышки омывателя фар на Лансер 10

Устранение ошибки B1B70 или U0170 на Лансер 10

Дорожка к дому - функция на Лансер 10

Автоматическое отключение питания - функция на Лансер 10

Автоматическое отключение питания - функция на Лансер 10

Подключение видеорегистратора на Лансер 10

Установка ксеноновых фар и AFS на Лансер 10

Список скрытых функций и опций на Mitsubishi Лансер 10

Список скрытых функций и опций на Mitsubishi Лансер 10

Установка магнитолы MMCS на Лансер 10

Установка круиз-контроля на Лансер 10

Данный сайт содержит обобщенный опыт владельцев Лансер 10 по установке различных штатных опций, дополнительного оборудования и тюнинге Лансер 10 ввиде текстовых и видео инструкций
Сгенерировано с "Оригинальные тексты" Yandex и "Авторство" Google.
Полное или частичное копирование статей разрешено со ссылкой на наш сайт-первоисточник!


Доброго времени суток! Есть задача проверять блок питания, но под нагрузкой. Такая задача возникает всё чаще. Существенную нагрузку мне обеспечить нечем, поэтому задался вопросом приобретения девайса или сборкой по схеме необходимого устройства. У китайцев есть куча готовых решений на 5В (USB). И недорого и удобно. Вроде такого:

Нужно нечто подобное, но на 12В. Готовых решений не нашел. Никто не сталкивался?
Если колхозить, то чем посоветуете? На уме были автомобильные лампочки, но если делать с переключателем на 1, 2, 3 и 5 ампер к примеру - то нужно уже несколько. Выйдет дороговато и громоздко. Резисторы? Но с точным номиналом и такой мощности я вряд ли найду, ну и опять же цена.
В радиоэлектронике не силён, поэтому искал готовое, но простую схемку спаять смогу. Подскажите, в какую сторону смотреть Спасибо!

Нужно вспомнить физику за 6 клас.Закон Ома и тестер в руки

и спираль с раздолбаного фена как самый доступный "реостат"

Злые вы люди
Спираль с феном мне как использовать? На весу?) А нагрузку менять - перекидывать крокодильчик по меткам на спирали?
В идеале - это наверное несколько резисторов (2.4, 4, 6, 12 Ом) но адовых размеров из-за мощности. Да и найти еще такие нужно. Упаковать такое в коробочку для удобного использования девайса - тоже непростая задача.
Или делать гирлянду из резисторов помельче, но сопротивлением побольше и в параллель.
Ну не знаю я, как будет грамотнее. Не моё это направление) Как бы вы сделали для себя?

Какая разница, где выделяется тепло - на резисторе или спирали? Берите обычную нихромовую спираль и хороший многопозиционный переключатель. Все это можно разместить внутри жестяной перфорированной коробочки.

У нихрома есть один досадный "косяк" , его сопротивление очень сильно зависит от температуры .

Strv, по запросу "эквивалент нагрузки для БП" дядька Гугл выдает ссылок на любой вкус. Может быть стабилизатор тока или стабилизатор сопротивления. Я делал свой вариант на лм358 и кт827. Рассеивает до 120Вт с обдувом, напряжение до 30В. Регулировка плавная. Тепловая мощность выделяется на транзисторе.

Tygra, При чём его температурная не стабильность?Если последовательно нихрому,намотанному на оправку из не горючего материала подцепить АМПЕРМЕТР и зажимом типа крокодил изменять его длину,можно создать любую нагрузку.Давно таким пользуюсь и ставлю на зарядные для автомобильных аккумуляторов.Провод диаметром 1 мм сложенный вдвое,свивается дрелью и наматывается на оправку.Кстати с помощью этого реостата произвожу и калибровку измерительных головок,стрелочных,от старых магнитофонов.Ставлю их ребятишкам на зарядники.Удобно шунт подгонять,естественно используется при этом мультиметр с пределом измерения 10 ампер.

petrovitsh, Спасибо, я их видел, смутил всё таки размер. Радиатор ставить точно не буду, на долгий тест ставить не планирую
msmmmm, Спасибо! Искал без слова эквивалент, вываливалась тонна инфы и всё про usb и акб банки. Нашел много интересных схем, правда большинство для меня сложноваты.

Читайте также: