Назначение разрешающая способность угловой диаметр дифракционного диска увеличение телескопа

Обновлено: 02.07.2024

Из-за явления дифракции на краях объектива звезды видны в телескоп в виде дифракционных дисков, окруженных несколькими кольцами убывающей интенсивности. Угловой диаметр дифракционного диска:

где l - длина световой волны и D - диаметр объектива.

Если диаметр объектива выражен в мм, длина волны в нм а разрешающая способность – в секундах дуги, то последняя формула примет вид:

Два точечных объекта с видимым угловым расстоянием Q находятся на пределе раздельной видимости, что определяет теоретическую разрешающую способность телескопа. Атмосферное дрожание снижает разрешающую способность телескопа до:

Разрешающая способность определяет способность различить два смежных объекта на небе. Телескоп с большей разрешающей способностью позволяет лучше увидеть два близко расположенных друг к другу объекта, например, компоненты двойной звезды.

Лучше также можно увидеть детали любого одиночного объекта.

Рисунок 3 иллюстрирует, как вид двух близлежащих объектов мог бы изменяться с увеличением разрешающей способности телескопа.

Когда угловая разрешающая способность мала, объекты выглядят как одиночное размытое пятно. С увеличением разрешающей способности два источника света станут различимыми как отдельные объекты.

Литература:

1.Астрономический календарь. Постоянная часть. М. Наука. 1981.

2. Сикорук Л.Л. Телескопы для любителей астрономии. М. Наука, 1982.

3. Цесевич В.П. Что и как наблюдать на небе. М. Наука. 1979

К зачету необходимо:

1. Знать характеристики объектива и телескопа.

2. Уметь объяснить их назначение.

3. Уметь находить увеличение, фокусное расстояние, выходной зрачок и разрешающую способность телескопа.

4. Уметь дать сравнительный анализ возможностей телескопов: рефрактора школьного, рефлекторов "Мицар" и "Алькор".

1. Определить диаметр объектива данного телескопа.

2. Определить фокусное расстояние телескопа.

3. Определить относительное отверстие телескопа.

4. Определить возможные увеличения телескопа с предложенными окулярами.

5. Определить проницающую силу телескопа.

6. Определить диаметр выходного зрачка телескопа с предложенным окуляром.

7. Определить разрешающую способность телескопа для длины волны, к которой более чувствителен глаз l = 0,555 мкм по формуле:

q = -------- (секунд дуги).

8. Определить поле зрения телескопа по формуле:

где w - поле зрения окуляра, М - увеличение телескопа.

Лабораторная работа № 7

Определение положений и условий видимости планет.

Цель работы:

Изучить положение планет на небе в заданный период времени. Определить условия видимости и наблюдений заданной планеты.

Оборудование:

IBM - совместимый компьютер типа XT/AT 286 и выше, с монитором не хуже EGA 256 K, DOS версии не ниже 3.0, пакет программ ASTRONOM, звёздная карта зодиакальных созвездий, подвижная карта звёздного неба.

Вопросы к допуску:

1. Условия видимости планет.

2. Подвижная карта звёздного неба.

Основные теоретические сведения:

Мы наблюдаем движение планет Солнечной системы с движущейся вокруг Солнца Земли и это приводит к ряду особенностей в их видимых перемещениях на небе. Траектории движения планет проектируются на неподвижные звёзды. Планеты, как и Солнце, движутся только по зодиакальным созвездиям, постоянно пересекая эклиптику, но никогда сильно не удаляются от неё.

Хорошие условия для наблюдений имеют только те планеты, которые находятся на значительном удалении от Солнца, при проекции их положений на эклиптику.

Меркурий и Венера, имеющие свои орбиты внутри орбиты Земли, никогда не отходят далеко от Солнца. Меркурий может удалиться на 280, Венера на 480. Поэтому условия для наблюдения Меркурия редко бывают благоприятными. Он почти всё время теряется в лучах Солнца. Венера видна всегда перед восходом Солнца или сразу после его захода. Различают периоды утренней и вечерней видимости Венеры. Некоторые древние народы, которые слабо знали астрономию, считали, что это два разных светила и называли Венеру Утренней и Вечерней звездой, в зависимости от того, когда она наблюдалась.

Внешние планеты, т.е. имеющие орбиты за орбитой Земли, удаляются от Солнца, в проекции на эклиптику, в любых пределах. Однако, бывают времена, когда Солнце проходит по тем же зодиакальным знакам, где в данный момент находится та или иная планета. В этот период условия для наблюдения планеты неблагоприятные, потому что она бывает на видимой части неба днём и теряется в ярких лучах Солнца.




Планеты обладают разной скоростью движения. Самые быстрые - Меркурий, Венера, Марс. Планеты, находящиеся далеко от Солнца движутся медленно. К ним относятся Юпитер, Сатурн, Уран, Нептун, Плутон. Так Меркурий имеет сидерический период обращения 87,97 суток, значит один зодиакальный знак он проходит примерно за неделю. Юпитер же с сидерическим периодом 11,86 лет будет двигаться по одному знаку около года.

Планеты движутся прямо, в направлении движения Солнца по эклиптике, потом замедляют свой ход, останавливаются и движутся в противоположном направлении. Через какое-то время направление движения снова меняется. Эти движения называются прямыми и попятными. Древние астрономы называли планеты из-за их сложного движения "блуждающими светилами".

Прямые и попятные движения планет объясняются различием орбитальных линейных скоростей планеты и Земли. При этом планеты имеют петлеобразные траектории. Размер петли зависит от отношения радиусов орбит планеты и Земли. У Юпитера угловой размер петли около 110, а у Плутона всего 30.

При некоторых положениях Земли и планеты, которые можно заранее вычислить, диск планеты проектируется на яркий диск Солнца. Происходит явление прохождения планеты по диску Солнца. У Меркурия такие прохождения бывают часто, в среднем одно за 15 лет. У Венеры прохождения по диску Солнца случаются реже. Ближайшее произойдёт в 2004 году. Сведения о прохождениях даются в астрономических календарях.

Фаза планеты измеряется отношением площади освещённой части видимого диска ко всей его площади. Угол между направлением с планеты на Солнце и Землю называется фазовым углом.

При фазовом угле y = 180М планета находится между Солнцем и Землёй, фаза равна нулю, планета не освещена совсем.

Связь между фазой и фазовым углом:


Для нижних планет фазовый угол изменяется от 0 до 180 0 . Для Марса - не более 48 0 ,3, для Юпитера - 11 0 , для остальных меньше 11 0 .

Для верхних планет фаза близка к 1.

В среднем планета становится видимой при удалении от Солнца на угол не менее 10° в весеннее и осеннее время и на угол 15° – в зимнее и летнее время года. Поэтому в первом приближении, считая орбиты планет круговыми, можно рассчитать угловое удаление планеты от Солнца, т.е. будет планета наблюдаема в данный момент или нет.

Например, 1 декабря Венера была в верхнем соединении, а Марс в западной квадратуре. Рассчитаем, будут ли они наблюдаемы 1 сентября. Это можно сделать при помощи масштабного рисунка и транспортира. Допустим 1 декабря Земля находилась в точке Т1, тогда Венера – в точке V1, а Марс – в точке М1. Спустя 9 месяцев (точнее 274 суток) Земля пройдет по своей орбите (l = n ´ Dt, где n – средняя угловая скорость орбитального движения, Dt – время движения.) 0°.9856 ´ 274 » 270° и окажется в точке Т2, Венера пройдет 1°.6021 ´ 274 » 439° (точка V2), а Марс – 0°.524 ´ 274 » 143°.5 (точка М2). Теперь, измерив угол ÐV2T2S (DlV) и угол ÐM2T2S (DlM), можно в первом приближении говорить о видимости этих планет на данную дату.

Итак, DlV » 34°, а DlM » 65°, т.е. в данном случае обе планеты наблюдаемы.


В действительности же условия видимости планет зависят не только от их удаления Dl от Солнца, но также от их склонения d и от географической широты j места наблюдения, которая влияет на продолжительность сумерек и высоту планет над горизонтом.

Литература:

1. 1. Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. М. 1983

101 ключевая идея: АСТРОНОМИЯ

Вы держите в руках книгу из серии «101 ключевая идея». Надеемся, что как данная книга, так и серия в целом окажется для вас интересной и полезной. Цель этой серии — доступным и увлекательным образом познакомить читателя с самыми разными областями знания.

В каждой книге содержится объяснение 101 ключевой идеи и понятия, относящихся к той или иной области знания. Для удобства пользования статьи расположены в алфавитном порядке. Все книги серии написаны таким образом, что от читателя почти не требуется никаких специальных знаний и подготовки. Они будут полезны и для студентов, и для тех, кто только готовится к поступлению в высшее учебное заведение, и просто для любознательных.

На наш взгляд, большинство учебников слишком объемны, чтобы служить справочными пособиями, а статьи в словарях слишком кратки, чтобы сформировать у читателя более или менее полное представление о предмете.

Книги этой серии совмещают в себе лучшие стороны и учебника, и словаря. Их вовсе не обязательно читать от корки до корки и в строго определенном порядке. Обращайтесь к ним, когда нужно узнать значение того или иного понятия, и вы найдете краткое, но содержательное его описание, которое, без сомнения, поможет вам выполнить задание или написать доклад. Материал в книгах излагается четко, с тщательным подбором необходимых научных терминов.

Итак, если вам потребуется быстро и без больших затрат получить сведения пр какой — либо теме — воспользуйтесь книгами данной серии!

Пол Оливер, издатель серии «Teach Yourself Books»(Hodder & Stoughton Ltd)

Эта книга предназначена для того, чтобы познакомить людей, не имеющих специального образования в области астрономии, с основными принципами и понятиями этой науки. Астрономия как предмет научного исследования имеет долгую историю и широкие перспективы в будущем. Идеи современной астрономии, такие, как черные дыры, гравитационные линзы, пульсары и квазары, захватывают наше воображение сильнее, чем научные открытия во многих других сферах, — возможно потому, что астрономия предназначена для людей любого возраста. Даже используемые словосочетания и термины, такие, как «Большой Взрыв», передают увлеченность темой и вдохновенное отношение к предмету исследований. Однако было бы заблуждением думать, что в давние времена астрономия была менее увлекательной, чем сейчас. Сами созвездия были нанесены на карты сотни лет назад и получили творческие названия в соответствии с воображаемыми рисунками звезд. В течение многих столетий астрономы пытались понять Вселенную и наше место в ней. Открытия Галилея и тяжкие испытания, выпавшие на его долю, положили начало современной научной эпохе, и нынешние ученые находятся в процессе открытия поразительной картины происхождения Вселенной. Много лет назад такие события, как солнечные затмения и появление комет, имели очень важное значение, направляя мысли и поступки правителей в разных странах. Открытия современной астрономии позволяют нам рассматривать самих себя и нашу крошечную планету в более широкой перспективе.

Астрономия — обширная область науки. В этой книге дано краткое описание ее главных идей в доступной и удобочитаемой форме. Ключевые идеи астрономии представлены в алфавитном порядке и при необходимости снабжены рисунками, таблицами и перекрестными ссылками. К ключевым идеям относятся основополагающие теории современной астрономии, такие, как теория Большого Взрыва, а также основные принципы и факты, необходимые для тех, кто только начинает изучать астрономию и хочет узнать побольше о ночном небе.

Вещество состоит из частиц, а антивещество состоит из античастиц. Частицы и античастицы происходят от фотона высокой энергии, который в результате этого события перестает существовать. Античастица имеет массу покоя, равную и противоположную по знаку (то есть отрицательную) массе покоя аналогичной частицы, а также обладает равным и противоположным по знаку зарядом аналогичной частицы, если эта частица имеет электрический заряд.

Первой обнаруженной античастицей был позитрон, который является противоположным аналогом электрона. Можно создать антипротон (вместе с другим протоном), заставив два протона столкнуться на скорости, приближающейся к скорости света. Античастицы могут соединяться друг с другом и образовывать составные античастицы, такие, как атомы антиводорода, каждый из которых состоит из антипротона и позитрона.

Для того чтобы фотон высокой энергии произвел частицу и ее античастицу, энергия фото — на (hf) должна быть равной или больше полной энергии покоя частицы и античастицы (которая равна 2m 0с 2 , где m 0— масса покоя частицы). Когда частица и соответствующая ей античастица сталкиваются и уничтожают друг друга, создаются два протона, чей общий момент движения и общая энергия равны первоначальному моменту движения и энергии частицы и античастицы. Иными словами, каждый раз, когда создается частица, появляется соответствующая ей античастица, а когда частица уничтожается (аннигилирует), соответствующая античастица тоже уничтожается. Галактики состоят из вещества, но не из антивещества. Наблюдения не выявили никаких свидетельств в пользу существования галактик, состоящих из антивещества. Астрономы полагают, что Вселенная появилась в результате так называемого Большого Взрыва около 12 млрд… лет назад. Считается, что энергия Большого Взрыва привела к образованию частиц и античастиц. В процессе первичного остывания Вселенной из космического излучения образовывалось гораздо больше частиц обычного вещества. Эта асимметрия привела к тому, что вскоре после Большого Взрыва все античастицы аннигилировали при столкновении с обычными частицами, образуя фотоны.

См. также статьи «Большой Взрыв», «Темное вещество».

Многие астероиды движутся по орбитам, наклоненным по отношению к орбите Земли под гораздо более крутыми углами, чем орбита любой из планет. Диаметр самого крупного астероида, Цереры, составляет около 770 км. Два других астероида, размеры которых превышают 500 км, — Веста и Паллада. Максимальная длина многих астероидов не превышает 10 км.

Среднее расстояние от астероидов до Солнца составляет около 2,8 астрономической единицы. Две группы астероидов, известные под названием Троянцы, находятся почти на орбите Юпитера; одна группа движется впереди, на расстоянии около 60 градусов дуги, а другая группа — позади, примерно на таком же расстоянии. Астероиды с сильно эллиптическими орбитами пересекают орбиты внутренних планет. К таким астероидам относится Икар, который подходит к Солнцу ближе, чем Меркурий. Были также обнаружены астероиды далеко за орбитой Юпитера и даже Нептуна, составляющие часть пояса Койпера, который считается источником короткопериодических комет.

Астероиды в основном состоят из таких материалов, как кремний, железо и изверженные горные породы. Фотографии некоторых астероидов были получены от космического зонда «Галилей», когда он проходил через пояс астероидов. Судя по этим фотографиям, астероиды густо покрыты кратерами, но не имеют характерной формы, хотя так называемые малые планеты считаются почти сферическими. Все астероиды лишены атмосферы из — за низкой силы тяготения, которая не может удерживать газы около поверхности.

О громные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии.

Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать многие из происходящих явлений невозможно. Когда явления происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звёзд. Основные сведения об эволюции звёзд получены именно таким способом. Более подробно об этом будет рассказано далее.

Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью сразу указать, какое из них находится ближе, а какое дальше от нас. На первый взгляд, все наблюдаемые светила кажутся нам одинаково далёкими.


Рис. 1.1. Небесная сфера


Рис. 1.2. Оценка угловых расстояний на небе

О том, как на основании угловых измерений определяют расстояния до небесных тел и их линейные размеры, будет рассказано далее.

Рис. 1.3. Система горизонтальных координат


Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила . Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.




У небольших телескопов объективом, как правило, служит двояковыпуклая собирающая линза. Как известно, если предмет находится дальше двойного фокусного расстояния, она даёт его уменьшенное, перевёрнутое и действительное изображение. Это изображение располагается между точками фокуса и двойного фокуса линзы. Расстояния до Луны, планет, а тем более звёзд так велики, что лучи, приходящие от них, можно считать параллельными. Следовательно, изображение объекта будет располагаться в фокальной плоскости.

Если изображение, даваемое объективом, находится вблизи фокальной плоскости окуляра, увеличение, которое обеспечивает телескоп, равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра:


W = .

Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звёзды из-за их колоссальной удалённости всё равно видны в телескоп как светящиеся точки.


В настоящее время астрономию называют всеволновой, поскольку наблюдения за объектами ведутся не только в оптическом диапазоне. Для этой цели используются различные приборы, каждый из которых способен принимать излучение в определённом диапазоне электромагнитных волн: гамма-, рентгеновское, ультрафиолетовое, инфракрасное и радиоизлучение.

Только оптическое и, по большей части, радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Остальные виды излучения сквозь земную атмосферу практически не проникают, она их рассеивает и поглощает. Поэтому телескопы для проведения исследований Вселенной в этих диапазонах длин волн устанавливаются на искусственных спутниках, орбитальных станциях и других космических аппаратах.


Антенна преобразует принятые ею электромагнитные волны в электрические сигналы, которые затем передаются к высокочувствительному приёмнику. В современных радиотелескопах для регистрации сигналов используется компьютер, который сначала запоминает их в цифровой форме, а затем представляет полученные результаты в наглядном виде.




Телескоп - увеличивает угол зрения, под которым видны небесные тела (разрешающая способность), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила). Поэтому в телескоп можно рассмотреть невидимые невооруженным глазом поверхности ближайших к Земле небесных тел и увидеть множество слабых звезд. Все зависит от диаметра его объектива.
Оптические телескопы (крупнейшие)

Рефрактор (refracto–преломляю) - используется преломление света в линзе (преломляющий). “Зрительная труба” сделана в Голландии [Х. Липперсгей]. По приблизительному описанию ее изготовил в 1609г Галилео Галилей и впервые направил в ноябре 1609г на небо, а в январе 1610г открыл 4 спутника Юпитера.
Самый большой в мире рефрактор изготовлен Альваном Кларк (оптиком из США) 102см (40 дюймов) и установлен в 1897г в Йерской обсерватории (близь Чикаго). Им же был изготовлен 30 дюймовый и установлен в 1885г в Пулковской обсерватории (разрушен в годы ВОВ).
Рефлектор (reflecto–отражаю)- используется вогнутое зеркало, фокусирующее лучи. В 1667г первый зеркальный телескоп изобрел И. Ньютон (1643-1727, Англия) диаметр зеркала 2,5см при 41 х увеличении. В те времена зеркала делались из сплавов металла, быстро тускнели.
Самый Большой в мире телескоп им. У. Кека установлен в 1996 году диаметр зеркало 10м (первый из двух, но зеркало не монолитное, а состоит из 36 зеркал шестиугольной формы) в обсерватории Маун-Кеа (Калифорния, США).
В 1995г введен первый из четырех телескопов (диаметр зеркала 8м) (обсерватория ESO, Чили). До этого самый крупный был в СССР, диаметр зеркала 6м, установлен в Ставропольском крае (гора Пастухова, h=2070м) в Специальной астрофизической обсерватории АН СССР (монолитное зеркало 42т , 600т телескоп, можно видеть звезды 24 м ).
Зеркально – линзовый. Б.В. ШМИДТ (1879-1935, Эстония) построил в 1930г (камера Шмидта) с диаметром объектива 44 см. Большой светосилы, свободный от комы и большим полем зрения, поставив перед сферическим зеркалом корректирующую стеклянную пластину.
В 1941 году Д.Д. Максутов (СССР) сделал менисковый, выгоден короткой трубой. Применяется любителями – астрономами.
В 1995г для оптического интерферометра введен в строй первый телескоп с 8м зеркалом (из 4 -х) с базой 100м (пустыне АТАКАМА, Чили; ESO).
В 1996г первый телескоп диаметром 10м (из двух с базой 85м) им. У. Кека введен в обсерватории Маун – Кеа (Калифорния, Гавайские острова, США)

  • непосредственные наблюдения
  • фотографировать (астрограф)
  • фотоэлектрические – датчик, колебание энергии, излучений
  • спектральные – дают сведения о температуре, химическом составе, магнитных полях, движений небесных тел.
  1. Документальность – способность фиксировать происходящее явление и процессы и долгое время сохранять полученную информацию.
  2. Моментальность – способность регистрировать кратковременные события.
  3. Панорамность – способность запечатлеть одновременно несколько объектов.
  4. Интегральность – способность накапливать свет от слабых источников.
  5. Детальность – способность рассматривать детали объекта на изображении.

  • В телескоп мы предельно видим: (разрешающая способность) α= 14 " /D [D – диаметр объектива телескопа в см.] или α= 206265·λ/D [где λ - длина световой волны, а D – диаметр объектива телескопа] .
  • Количество света, собранного объективом – называется светосилой. Светосила Е=

п реимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических. Представляют собой чашу (подобие локатора. плакат "Радиотелескопы"). Радиоастрономия получило развитие после войны. Наибольшие сейчас радиотелескопы это неподвижные РАТАН- 600, Россия (вступил в строй в 1967г в 40 км от оптического телескопа, состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м), Аресибо (Пуэрто –Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Из подвижных имеют два радиотелескопа 100м чашу.


Небесные тела дают излучение: свет, инфракрасное, ультрафиолетовое, радиоволны, рентгеновское, гамма – излучения. Так как атмосферы мешает прониканию лучей к земле c λ< λ света (ультрафиолетовые, рентгеновские, γ - излучения), то последнее время на орбиту Земли выводятся телескопы и целые орбитальные обсерватории : (т.е развиваются внеатмосферные наблюдения).


Особое значение в наш космический век придается орбитальным обсерваториям. Наиболее известная из них – космический телескоп им. Хаббла – запущен в апреле 1990 года и имеет диаметр 2,4 м. После установки в 1993 году корректирующего блока телескоп регистрирует объекты вплоть до 30-й звездной величины, а его угловое увеличение – лучше 0,1" (под таким углом видна горошина с расстояния в несколько десятков километров).

Читайте также: