Сколько ватт потребляет жесткий диск

Обновлено: 04.07.2024

Большинство людей при окончании работы с настольным компьютером или ноутбуком выключают его («завершение работы» в Windows). Некоторые держат компьютер всегда включённым. Ну и оставшееся меньшинство пользуются режимами энергосбережения.

На данное исследование меня подвигло желание узнать энергопотребление компьютера в режимах сна и гибернации, а также участившиеся в последнее время реплики владельцев твердотельных накопителей, о том как быстро загружается их компьютер и программы по сравнению с компьютером с жёстким диском. Но обо всем по порядку.

На ebay мною был приобретён бытовой амперметр WANF (производство Китай) стоимостью $20. Как таковой потребляемый ток этот амперметр на экран не выводит, а показывает напряжение в сети и потребляемую мощность. Цель данного прибора – показать энергопотребление включённой в него техники.

  • Процессор: QuadCore Intel Core i5-2400, 3200 MHz (штатная частота)
  • Системная плата: Intel Cougar Point H67, Sandy Bridge (ASRock H67M-GE )
  • Системная память: 16Гб DDR3-1333 (4x4Гб)
  • 3D-акселератор: AMD Radeon HD 6870 (штатные частоты)
  • Монитор 1: Asus VW266H [26" LCD] 1920х1200
  • Монитор 2: BenQ FP93GX [19" LCD] 1280х1024
  • Блок питания: 600 Вт (FSP FX600-GLN)
  • 3 жёстких диска + 1 привод DVD
  • Windows 7 x64

Перейдём к собственно замерам энергопотребления. Рассмотрим различные режимы ACPI

Состояние S3 (Сон) – 3,5 Вт.

В данном состоянии питание подаётся на материнскую плату и ОЗУ. Процессор, видеокарта и прочая периферия отключаются. Выход компьютера из режима сна в рабочий режим практически мгновенный и вы получаете рабочий стол со всеми запущенными программами в том состоянии, в котором они пребывали перед переходом в сон. Содержимое ОЗУ полностью сохраняется, включая кэшированные данные (Prefetch и Superfetch)
Режим сна очень удобен для повседневного использования на десктопе. С утра включаете компьютер – и, вуаля, сразу можно работать. SSD или HDD диск – значения не имеет, компьютер включается мгновенно. Так как в ОЗУ сохраняются кэшированные данные, то повторный запуск приложений очень быстрый относительно холодного старта компьютера, что опять же нивелирует разницу в скорости между SSD и HDD.
Энергопотребление настолько мало, что повседневное использование этого режима обойдётся всего в 10 лишних рублей в месяц за электричество. Wi-Fi роутер, VoIP адаптер и телевизор в режиме ожидания потребляют больше, по 4-5 Вт каждый.

Состояния S4/S5 (Гибернация/Выключен) – 1,7 Вт или 0 Вт в зависимости от настроек BIOS.

Режимы S4 и S5 по энергопотреблению аналогичны. По умолчанию питание подаётся только на материнскую плату, а ОЗУ, процессор и остальная периферия отключены. Однако в настройках BIOS можно включить глубокий (Deep) S4/S5. В этом случае материнская плата также отключается и компьютер ничего не потребляет. Недостатком этого варианта является то, что компьютер можно будет включить только кнопкой питания, в то время как в первом случае он может включиться по событию RTC alаrm (например по таймеру задачи Планировщика заданий Windows), Wake-on-LAN, нажатию кнопки на клавиатуре или мыши и т.д.

Подробнее о самих режимах. S4 – Гибернация (спячка) – режим, в котором содержимое ОЗУ перед выключением компьютера сбрасывается на диск (постоянную память). При включении компьютера содержимое ОЗУ восстанавливается из дампа на диске, и мы получаем компьютер в том же состоянии, что и до перехода в гибернацию. В этом плане гибернация аналогична режиму сна, но готовность к работе происходит не мгновенно, а примерно за 30 секунд (при использовании жёсткого диска в качестве системного)
Кроме того в дампе не сохраняются кэшированные данные из ОЗУ, поэтому запуск приложений после возвращения из гибернации медленный как после холодного старта. Для десктопа данный режим не имеет преимуществ по сравнению со сном и больше предназначен для ноутбуков.

Состояние S5 – обычное выключение. Дополнительно рассказывать здесь нечего.

Для сравнения приведу потребление компьютера в рабочем режиме (состояние S0).

Потребление в простое – 95 Вт. Первый монитор подключён к дискретной видеокарте Radeon, второй монитор подключён к видеокарте, интегрированной в процессор. Если мы подключим оба монитора к дискретной видеокарте, то потребление возрастает на 30 Вт и составляет 125 Вт. Таким образом, второй монитор лучше подключать к материнской плате. Помимо экономии электроэнергии мы сможем использовать технологию Intel Quick Sync, которая значительно ускоряет (больше чем дискретные видеокарты) конвертацию видео в H.264. Если хотя бы один монитор не будет подключён к интегрированному видео, то Quick Sync будет недоступен.

Заметка идет дополнением к >этой статье лаборатории<, после прочтения которой у меня остались некоторые вопросы. На часть вопросов я постараюсь ответить в этой заметке (если кому надо - "полная" версия статьи).

Винчестеры
WD5000BEVT - 2,5", 5400об/м, 500Гб, рассмотрен в статье.
WD2500BEKT - 2,5", 7200об/м, 250Гб, его более скоростной родственник.
ST3250410AS - 3,5", 7200об/м, 250Гб, достаточно типичный десктопный винчестер (оказавшийся под рукой).

Про шум
Открытый стенд, винчестеры не закреплены, лежат на столе на поролонке. В корпусе могут зазвучать по другому. Ну и конечно, все нижесказанное - моё субъективное мнение. Кто-то может услышать их иначе.
Шум перемещения головок отчетливо слышно (ночью) у всех винчестеров. Чуть поменьше у BEVT, чуть больше у ST.
Шум в покое у BEVT погромче чем у BEKT (!! тут вспоминаются соображения, что не для надежности ради производители снижают скорость винчестеров, а для того чтобы сэкономить на подшипниках и двигателях), но это белый шум. У BEKT шум в покое зависел от расположения слушателя. Мог быть даже тише шума его более медленного собрата. Но при другом расположении головы, шум возрастал, ясно становилось слышно назойливое гудение. Возможно, что будучи закрепленным в корпусе компьютера, этот шум будет мешать больше, чем белый шум от BEVT.
Здесь можно отметить еще один момент. BEKT проработал больше года и стал, как мне показалось чуть-чуть громче. Впрочем, мне всегда кажется, что проработав год-два, винчестеры становятся погромче.

Жужжание, подзуживание 3,5" ST было на уровне шума от обоих винчестеров на 2,5". Громче их обоих или же одинаково, сложно сказать. Спектр шумов другой, и это не позволяет мне сделать однозначный вывод.
Но не могу не отметить у ST противный свист - это индивидуальная особенность конкретно этого винчестера. Хотя есть предположения, что винчестеры Сеагейт чаще противно пищат, нежели винчестеры от других производителей.

Мультиметры
Использовался мультиметр DT-832. (Если кто надумает приобрести себе дешевый мультиметр, то DT-838 предпочтительней - он с термопарой )
Также, мне интересно было проверить показания DT-832 старым стрелочным Ц4328. Пару замеров провел обоими устройствами (в том числе и в момент пуска), разницу я не уловил. Дальнейшие измерения проводились DT-832.
В итоге, учитывая класс приборов и как проводились замеры, точность измерений составляет порядка 5-10%.

Энергопотребление
BEKT и BEVT питаются только от 5В (проверено ). 3,5" Seagate - и от 5В и от 12В.


ток потребления (в амперах)
BEKT BEVT ST 5В ST 12В
Покой 0,23 0,2 0,42 0,25
Поиск 0,58 0,47 0,64 0,52
Старт 0,88 0,74 0,72 1,67

Покой - чтение, запись или еще какие-либо действия с винчестером не производятся.
Поиск - запущен тест Эвереста Random Read Acces.
Старт - измерялся максимальный потребляемый ток в первые секунды после подачи напряжения на винчестер.

Замечу, что у BEKT есть некий промежуточный режим, в котором он работает сразу после того как прекратилось чтение/запись. Потребление в этом режиме - 0,28А. Но через 5 секунд бездействия, этот режим сменяется "покоем".

Итого, винчестеры потребляют:
2,5" винчестер от 1-1,5Вт в покое, до 3Вт при активной работе,
3,5" винчестер от 5Вт в покое, до 10Вт при активной работе.
Потребление дисков при включении, можете оценить сами. Грубая оценка: до 5Вт у 2,5", до 25Вт у 3,5".

Измеренные значения вполне согласуются с тем, что написано на самих винчестерах:
WD5000BEVT и WD2500BEKT - "5VDC: 0,55A".
ST3250410AS - "+5V 0.72A" и "+12V 0.52A "

Скорость работы. Графики HDTach, Everest.

Программы: Windows XP, HD Tach 3.0.4.0, Everest 5.30.

Были проведены простые тесты используемой в статье HD Tach. А также прогнан тест и в Эвересте 3.0.4.0. Тест линейного чтения в Эвересте не проводился - у меня не хватило терпения проводить эти тесты. (больше часа тест одного винчестера!)
Без сомнения, этих тестов недостаточно для создания полной картины, но в общих чертах разницу между BEVT на 5400об/м и 7200об/м винчестерами увидеть можно. Выводы по результатам читатель пусть делает сам.


Графики HD Tach
WD5000BEVT и WD2500BEKT на одном графике:

BEVT: 17.4мс, 62Мб/с; BEKT: 13.9vc, 57Мб/с. (время доступа, средняя линейная скорость чтения)
Отмечу, что результат для WD5000BEVT получился хуже, чем в статье. И это не объяснишь погрешностью. В статье у WD5000BEVT 16,6мс и 67Мб/с.
Кстати, AHCI режим был отключен. Может поэтому? Или потому что система была Win7?

WD5000BEVT, WD2500BEKT и ST3250410AS, на каждый винчестер по графику (кстати, можем заметить, что на этих графиках время случайного чтения на доли миллисекунды возросло - погрешность измерения налицо):

В качестве ориентира на всех трех графиках показан старенький Western Digital Raptor WD74 (3,5", 10000rpm, 74Гб)
Как по быстрому на одной картинке показать результаты всех трех винчестеров, я не сообразил, возможно позже поработаю над этим. Пока так останется.
Резкий кратковременный провал на графике Сеагейта объясняется тем, что с этого винчестера была загружена система. Думаю, система не дает какие-то места читать, поэтому и провал.
Проверял - если загрузиться с другого винчестера, то провалы у Сеагейта исчезнут, появятся на том винчестере, с которого загрузились.


Тест Эвереста на задержку чтения. (тоже самое что на предыдущих картинках, только более наглядно)

Температура
В покое, практически необдуваемые, в теплой комнате (около 25 С), по показаниям Эвереста, винчестеры показывают следующую температуру:
WD5000BEVT - 36 С.
WD2500BEKT - 36 С.
ST3250410AS - 46 С.
Замечание: 2,5" винчестеры прикручены болтиками к тонкой железной пластине размером как раз с два винчестера. Когда лежали по отдельности на поролонке, BEKT на пару градусов был теплей BEVT.
Пластина же - половина нижней пластины от старого СД-рома. Сделано так с целью проверить, не улучшится ли время поиска, когда винчестер будет хоть как-то закреплен. Заметных изменений обнаружено не было.

p.p.s. совсем упустил из виду один момент, но лучше поздно, чем никогда. Спасибо участнику конференции FFRip за некоторые ценные замечания. С его помощью, заметка появилась быстрее чем могла бы появиться.

Маленький бонус: потребление SSD от Интел.
При старте мультиметр показал по линии 5В - 0,3А, в реальности до 0.5А, имхо.
При покое - 0,14А.
При дефрагментации - до 0,5А, в среднем около 0,4А.
На сайте Интел указано что в покое потребляет 0,15Вт. Но так возможно, если активируется режим DIPM. Только на некоторых чипсетах Интел при соответствующих драйверах.

В наше время на просторах нашей необъятной родины развелось очень и очень много специалистов по сборке и ремонту персональных компьютеров. Тем более блочная схема сборки персональных компьютеров к этому располагает. Домашним «специалистам» не нужно знать принципы работы полупроводниковых элементов, для них достаточно лишь поверхностно знать рабочие параметры готовых модулей ПК, чтобы возомнить себя «великими» компьютерными мастерами и ремонтниками.

Домашние специалисты могут установить блок питания Perdoon! Я такой видел один раз в жизни. Домашние специалисты могут установить блок питания Perdoon! Я такой видел один раз в жизни.

Давайте сначала разберемся с общим энергопотреблением вашего ПК. Самый большой аппетит энергопотребления имеют центральный процессор и видеокарта, поэтому подбирать мощность блока питания нужно исходя именно из их энергопотребления. Запитаны процессор и видеокарта по линии 12 вольт, поэтому при выборе БП по мощности, обязательно смотрите его характеристику « мощность по линии 12 В », эта характеристика должна быть максимально приближена к суммарной, выходной мощности БП. Итак, чтобы подсчитать суммарную мощность энергопотребления системного блока, необходимо знать энергопотребление комплектующих этого системника в отдельности. Самый точный способ узнать энергопотребление комплектующих, это просмотр их спецификаций на сайтах производителях. Далее я приведу усредненные значения энергопотребления наиболее часто используемых компьютерных комплектующих, которые вполне годны для использования, если вы не можете найти те или иные спецификации.

1. Узнаете модель материнской платы, обычно эта информация напечатана на плате. Далее ищите её характеристики на официальном сайте и смотрите энергопотребление. Если такой информации найти не удалось, тогда пытаетесь определить класс материнской платы, для этого можно использовать Яндекс или Google. Бюджетные материнские платы потребляют около 50 Ватт, материнские платы среднего класса — до 75 Ватт и материнские платы ультра класса потребляют около 100 Ватт.

2. Энергопотребление планок оперативной памяти (максимальные параметры). Здесь все достаточно просто: DDR2 и DDR3 до 1600 МГц — 1 Ватт, DDR3 от 1866 до 2133 МГц — 2 Ватт, DDR3 2400 МГц — 3 Ватт, DDR3 выше 2400 МГц — 4 Ватт, DDR4 — около 5 Ватт.

3. Энергопотребление жестких дисков. Современные жесткие диски(HDD) в среднем потребляют около 10 - 15 Ватт. Так же есть GREEN класс HDD, их потребление около 10 Ватт. SSD накопитель потребляет до 3 Ватт.

4. Энергопотребление привода CD/DVD/ Blue-Ray дисков составляет около 30 Ватт.

5. Энергопотребление каждого вентилятора высчитывают умножением его рабочего напряжения на потребляемый ток, эти данные можно посмотреть на наклейке вентилятора. К примеру, на наклейке вентилятора указано 12 В, 0.4 А перемножив эти данные получаем 4.8 Ватт – мощность данного вентилятора.

6. Отдельная звуковая карта до 30 Ватт, отдельная сетевая карта до 20 Ватт, ТВ тюнер до 50 Ватт, плата видеозахвата до 80 Ватт.

7. Энергопотребление устройств подключенных по USB 3.0 до 7.5 Ватт, USB 2.0 до 2.5 Ватт.

8. Энергопотребление процессора можно сопоставить с его тепловым пакетом - TDP. TDP прописывается ко всем без исключения процессорам. Самые распространенные значения TDP – 65 Вт, 95 Вт, 125 Вт. Данный способ является не совсем точным, т.к. реально потребляемая процессором мощность, может быть ниже, но, тем не менее, этот способ может послужить хорошим ориентиром.

9. При определении энергопотребления видеокарт можно применить довольно простой, но грубый метод. Неточность данного метода заключается в том, что он показывает максимальное энергопотребление видеокарты в завышенном виде. А подсчитывается все очень просто: к сумме мощностей разъемов дополнительного питания прибавляется мощность по слоту PCI-E. Спецификации разъемов по предельной нагрузке:

1. 6 pin - 75 Вт; 2. 8 pin - 150 Вт; 3. По слоту расширения PCI-E - 75 Вт .


Традиционно основными характеристиками жесткого диска, достойными подробного рассмотрения в обзорах, считаются его ёмкость и производительность – конечно, оба параметра (а особенно второй) хоть и имеют много разных аспектов, но по большому счёту, всё внимание авторов обзоров сводится к этим двум пунктам.

Такая же характеристика жёсткого диска, как его энергопотребление, долгое время оставалась за кадром. Казалось бы, она несущественна – ну на что может повлиять десяток ватт, когда современная видеокарта или процессор потребляют на порядок больше? – однако это не совсем так.

Во-первых, в последнее время тема энергосбережения стала весьма популярна среди производителей – скажем, новый стандарт Energy Star 4.0 указывает, что жёсткий диск должен потреблять в простое не более 7 Вт или не более 14 % от общего потребления компьютера (с учётом развитых режимов энергосбережения современных процессоров, 14 % от общего потребления офисного ПК в режиме простоя могут оказаться не такой уж большой величиной). Обусловлено это многими факторами – борьбой за экологию, проблемой постоянной нехватки мощности энергосистем в промышленно развитых странах, стремлением сократить счета за электроэнергию. Конечно, в масштабах одного компьютера экономия невелика, но если вспомнить, что в одном офисном здании в наше время могут стоять сотни компьютеров – цифры получаются вполне весомые.

Во-вторых, и это более значимо в, так сказать, наших персональных масштабах, энергопотребление винчестера равно его тепловыделению, тепловыделение при прочих равных условиях определяет его температуру, а температура – время наработки на отказ. Например, если обратиться к весьма известному исследованию компании Google " Failure Trends in a Large Disk Drive Population " (формат PDF, 242 кбайта), то увидим, что для новых винчестеров вероятность выхода из строя от температуры зависит слабо – а вот для уже отслуживших три года она резко увеличивается, если температура превышает 40°C.




Влияние температуры диска на вероятность отказа
(по данным Google)


Соответственно, выбрав более экономичный диск, мы при прочих равных условиях обеспечим меньшую его температуру – и большую надёжность в долгосрочном периоде. Особенно это важно для компактных microATX-корпусов, многие из которых не имеют возможности установки отдельного вентилятора для обдува жёстких дисков; впрочем, даже в полноразмерных корпусах при установке трёх-пяти дисков проблема их нагрева становится существенной.

В-третьих, жёсткие диски применяются не только в настольных компьютерах, но и в ноутбуках – до перехода на твердотельные флэш-накопители (SSD, Solid State Drive) нам всем ещё далеко. И хотя и в ноутбуке винчестер является далеко не самым прожорливым компонентом, совсем забывать о нём не стоит: свою лепту в продолжительность работы при питании от аккумулятора он вносит.

В-четвёртых, многие пользователи покупают 2,5" жёсткие диски для использования в качестве переносных накопителей – в коробочках с USB-интерфейсом. Многие из подобных коробочек не имеют дополнительного питания, в то время как один разъём USB может обеспечить ток не более 500 мА – и в случае с некоторыми винчестерами, потребляющими больший ток, это приводит к проблемам: диск может работать нестабильно или же не распознаваться компьютером вообще.

Особенный же интерес измерениям энергопотребления винчестеров придаёт наметившаяся тенденция к гонке за экономичностью среди их производителей – так, буквально на днях компания Hitachi объявила о выпуске экономичных жёстких дисков Deskstar P7K500, предназначенных для настольных компьютеров, но при этом использующих технологии энергосбережения, уже отработанные в ноутбуках.

В данной статье мы укажем некоторые проблемы, возникающие при экспериментальном измерении энергопотребления жёстких дисков, и методы их решения. Описанная ниже методика будет в дальнейшем регулярно использоваться нами в тестах жёстких дисков.

Методика измерений


Для проведения точных измерений энергопотребления жёстких дисков мы собрали несложную электронную схему, позволяющую нам регистрировать ток произвольной формы, меняющийся с высокой частотой. Основная проблема заключается в том, что для таких измерений традиционно используется осциллограф – однако на его вход надо подавать напряжение, а не ток. Соответственно, нам нужен преобразователь ток-напряжение:



Последний представляет собой два шунта сопротивлением по 0,05 Ом, включённые в разрыв проводов питания тестируемого жёсткого диска. Соответственно, на каждый ампер потребляемого диском тока на шунте падает напряжение 0,05 В. Сигнал с шунта умножается операционным усилителем (LM324N) чуть менее чем в 20 раз – в результате на выходе мы получаем напряжение, пропорциональное потребляемому винчестером току, с масштабом 0,96 В на 1 А. Кроме того, нулевому потреблению жёсткого диска соответствует напряжение 1,525 В на выходе нашей схемы, поэтому полученный с неё сигнал пересчитывается из вольт U в амперы I по следующей формуле:


Для аккуратного измерения тока, меняющегося с большой скоростью, мы используем осциллограф Velleman PCSU-1000 , регистрирующий напряжение на выходе описанной выше схемы. Временная развёртка осциллографа устанавливается равной 0,5 мс/дел. (частота оцифровки 250 кГц, что достаточно для регистрации сигнала с частотой до 125 кГц), чувствительность – 0,5 В/дел. Развёртка осциллографа работает в автоматическом режиме, а снимаемые им осциллограммы передаются в специально написанную для их обработки программу, пересчитывающую полученные с осциллографа вольты в амперы по указанной выше формуле и подсчитывающую среднее и максимальное значения. На каждом этапе измерений для получения максимально точного результата снимается по 180 осциллограмм (измерения длятся 60 секунд, каждую секунду программа запрашивает с осциллографа по 3 осциллограммы), каждая осциллограмма имеет длину 4000 точек – то есть, итоговый результат рассчитывается по 720 тысячам замеров мгновенного потребляемого тока. При необходимости количество измерений можно увеличить. Так как упомянутый осциллограф – двухканальный, то, используя два преобразователя ток-напряжение, можно одновременно измерять потребление жёсткого диска по шинам и +5 В, и +12 В.



В результате обработки результатов измерений программа сообщает нам средний ток по шинам +12 В и +5 В в амперах (и соответствующую мощность в ваттах), а также максимальные зафиксированные значения тока.




Блок-схема измерительной системы


Описанная система подключается к жёсткому диску прямо в компьютере – в разрыв цепи питания. Данное обстоятельство позволяет без проблем измерять энергопотребление винчестеров под любыми типами нагрузок, которые мы можем смоделировать в тестах – например, в IOMeter.


Мультиметр против осциллографа



Основная часть энергии, потребляемой диском по шине +12В, затрачивается на перемещение головок; импульсы идут парами: первый соответствует началу движения головки (разгон), второй – окончанию (торможение). Расстояние между ними варьируется от почти нуля до времени, необходимого на перемещение головки от одного края диска до другого – в зависимости от того, насколько диску "повезло" с двумя идущими подряд запросами. Перед началом перемещения головок видно также увеличение энергопотребления по шине +5 В – это активизируется электроника диска, "обдумывающая" очередной запрос.

Впрочем, нас интересует не столько механика работы винчестера, сколько характеристики импульсов. Как вы видите, во-первых, их амплитуда очень высока (в 4-5 раз больше постоянной составляющей), во-вторых, передний фронт почти вертикален, а продолжительность всего импульса может составлять менее миллисекунды. Каковы шансы "поймать" этот пик мультиметром?

Увы, они равны нулю. Мультиметры – это устройства, в основе своей предназначенные для работы с постоянным напряжением (и, соответственно, постоянным током), в них попросту не используются быстрые АЦП, ибо в этом нет никакого смысла. Типичный мультиметр осуществляет измерения с периодом порядка нескольких десятых долей секунды, что на два порядка (!) больше продолжительности импульса тока, порождённого перемещением головок жёсткого диска.

Для большей наглядности мы разложили представленную выше осциллограмму в спектр:



Как вы видите, в данном случае мы имеем большой пик в нуле (постоянная составляющая тока), довольно высокий и более-менее постоянный уровень в диапазоне до нескольких десятков килогерц, высокий всплеск на 42,8 кГц – и ещё один всплеск на 85,6 кГц. Соответственно, чтобы адекватно измерить параметры такого сигнала, нам нужно устройство, способное работать с частотами хотя бы до 100 кГц – и мультиметр к подобным явно не относится.



Для проверки этой теории мы использовали два почти случайным образом выбранных мультиметра – недорогой Mastech M890G и более серьёзный Uni-Trend UT70D . Последний, помимо прочего, обладает функцией индикации среднего, минимального и максимального значений за заданный отрезок времени.

Итак, снова запускаем IOMeter, режим "Random Read", жёсткий диск Maxtor Atlas 15K II – и под стрекот головок смотрим, что покажут нам мультиметры. Так как каждый из них может измерять только одно значение (в отличие от двухканального осциллографа), то подключали мы их к 12-вольтовому каналу.

На первом из них, Mastech M890G, понять что-либо трудно – значение на экране постоянно скачет, в максимуме достигая примерно 2,9 В, в минимуме проваливаясь примерно до 2,4 В. Пользуясь приведённой выше формулой, мы без труда переводим замеченные числа в ток потребления: от 0,84 А до 1,32 А. Уже здесь ясно, что мультиметр явно привирает: на осциллограмме выше отчётливо видно, что разница между максимальным и минимальным значениями намного больше полутора раз; выделить же из скачущих цифр среднее значение и вовсе невозможно.

К счастью, у нас есть ещё UT70D, который умеет среднее значение подсчитывать аппаратно – более того, он ещё может и передавать данные на компьютер по интерфейсу RS-232, так что результаты измерений мы представим сразу в виде снимка экрана:



Слева вы видите окно нашей собственной программы, обрабатывающей данные с осциллографа, справа – окно программы, получающей данные от мультиметра. На последнем большими цифрами указано среднее значение, ниже можно увидеть максимальное и минимальное значения. Мультиметр переключался в режим подсчёта среднего значения одновременно с запуском нашей программы и находился в этом режиме те же 60 секунд, что длился набор данных с осциллографа.

Итак, по показаниям мультиметра: среднее потребление – 1,06 А, максимальное – 1,13 А. По результатам обработки данных с осциллографа: среднее потребление – 1,04 А, максимальное – 2,71 А. Как видите, мультиметр довольно точно показал среднее значение, но, увы, ни одного пика потребления "поймать" так и не смог.

При этом, вообще говоря, нельзя даже сказать, что любой цифровой мультиметр будет правильно показывать хотя бы среднее значение: мы лишь экспериментальным путём установили, что конкретно наша модель UT70D конкретно на данном винчестере показывает весьма похожее на правду число. Будут ли столь же адекватны показания других мультиметров или хотя бы этого же мультиметра на других винчестерах (то есть с другим характером потребляемого тока) – мы не знаем.

И, разумеется, пытаться измерять мультиметром пиковые значения вообще бессмысленно. В нашем случае они даже близко не похожи на правду; более того, если ваш мультиметр вдруг показывает большие значения, из этого никак не следует, что он их показывает правильно – эту правильность можно установить лишь в результате сравнения с полноценной измерительной системой на базе осциллографа, а если у вас есть такая система, то зачем пользоваться мультиметром.

Читайте также: