Влияние частоты оперативной памяти на производительность в играх ddr3

Обновлено: 06.07.2024

Сегодня мы хотим рассказать, об влиянии частоты оперативной памяти на FPS в играх, на Intel .

К AMD данная статья не применима, так как у AMD, другая архитектура и прирост FPS, там идет при разгоне процессора с высокочастотной оперативной памятью в тандеме.

Расскажем, почему так происходит, что от чего зависит и при каких условиях будет прирост, а при каких нет.

Данная тема давно избита и многие уже писали об этом, но у всех разные выводы.

Мы постараемся свести все к одному знаменателю.

1. Первый детальный, но мало известный тест был проведен в 2018 году.

Ссылка на тест:

Там тестировали память 2133Мгц. с 3200Мгц.

Бенчмарк FarCry Primal (низкие настройки) 2133 МГц.

Бенчмарк FarCry Primal (низкие настройки) 3200 МГц.

Watch Dogs 2 – Оперативная память 2133 МГц. vs 3200 МГц. с заниженной частотой процессора.

Причина почему, стоят низкие настройки графики и на Watch Dogs 2 занижена частота процессора, в том, что высокая частота оперативной памяти, проявляет прирост, только когда процессор работает на пределе. А так же, чтобы процессор не ограничивался возможностями видеокарты.
  • Прирост производительности есть, но не превышает 15%, при сравнении 2133Мгц. и 3200Мгц. При использовании оперативной памяти на частотах 2666Мгц. (i3 и i5) или 2993Мгц (i7 и i9), данный прирост сократиться до 10%.
  • Максимальный прирост FPS, от оперативной и памяти будет проявляться тогда, когда система упирается в производительность процессора. В других ситуациях, данный прирост может быть и вовсе не заметен.

2. Второй детальный тест, был сделан так же в 2018 году.

Ссылка на тест:

Тут происходит тест оперативной памяти на частотах 2133Мгц. и 4133Мгц.

Тест на максимальной графике в ГТА 5, не дает никакого прироста.
Причина в том, что все упирается в видеокарту и разницы от частоты оперативной памяти нет.
На графике видно, что FPS, на обеих частотах памяти почти идентичный, но есть разница в нагрузке на процессор. При высокочастотной памяти, процессор менее нагружен. Это обусловлено тем, что процессор меньше времени стоит в простои и более быстро получает команды от оперативной памяти, тем самым затрачивает меньше времени на подготовку кадров. Что и приводит к снятию с него нагрузки.

Простой процессора, всеми программами для теста, определяется как загруженность под 100%, но по факту это не так и он просто бездействует.

Тест ГТА5 с низкой графикой. Снят потолок по видеокарте, для максимальной нагрузки на процессор. И тут есть прирост FPS от высокочастотной оперативной памяти (до 20%). Обусловлено это тем, что благодаря оперативной памяти, процессор смог обрабатывать больше кадров, с меньшими простоями.
Тест Far Cry 5. В левом окне видно, что при 109 FPS, все упирается в процессор. С высокочастотной памятью, нагрузка на процессор снизилась и тест уперся в производительность видеокарты, выдав 138 FPS (правое окно). При установки более мощной видеокарты, данный тест на высокочастотной памяти, показал бы еще большей результат (более 40% прироста).

Тут все из-за движка игры, он процессора ориентированный, только из-за этого есть такой прирост. Так как высокочастотная память, снимает нагрузку с процессора, давая ему возможность больше раскрыться.

Процессора ориентированные движки, это движки игр, где львиная доля функций ложиться на процессор (пример: рандомный мусор на улицах), а не на видеокарту.
  • В подавляющем большинстве игр, прирост FPS не превысит более 25%. При сравнении 2133Мгц. с 4133Мгц. Как и писали ранее, при использовании стоковой оперативной памяти 2666Мгц. (i3 и i5) или 2993Мгц. (i7 и i9), смотря какой у Вас процессор. Разница в приросте будет более размыта и менее ощутима.
  • В большинстве случаев с максимальной графикой в играх, Ваш ПК, всегда будет упираться по видеокарте, процессор же будет в простои и прирост FPS, будет минимален.
Исключения, проекты с процессора ориентированным движком (из 10ти игр, в среднем их 3)

Высокочастотная оперативная память, дает прирост, если:

  • Система упирается в производительность процессора (слабый процессор)
  • При игре с низкой графикой (чтобы система не упиралась в видеокарту)
  • При игре в проекты с процессора зависимым движком

Высокочастотная память - Снимет нагрузку с процессора (увеличит его кпд).

Актуальность по нашему мнению в высокочастотной памяти, не большая. Она дороже, если покупать уже разогнанную. Либо нужно покупать материнскую плату более дорогую с хорошим охлаждением по питанию и разгонять память самому.
При существенной финансовой разнице, имеет больше смысла, купить процессор, либо выше линейкой, либо в рамках одной линейки с более высокой частотой на ядро. По факту со стоковой памятью, это даст даже больший прирост. Как и более целесообразно на будущее.

Все это, лишь наше мнение. Оно Вас ни к чему не обязывает.
Надеемся, Вам было интересно.


На что влияет объем и частота оперативной памяти, какая конфигурация выгоднее для игр, для приложений и одновременной работы и того и другого – самый распространенный вопрос пользователей. Сколько же памяти нужно для различных задач. Чаще всего мы прибегаем к покупке стандартного набора из пары модулей DIMM частотой от 2666 МГц и выше. Устанавливают их в свой ПК и в 2-3 случаях из 10 немного их разгоняют до 3200-3800 МГц. Энтузиасты сразу выбирают комплекты с частотами более 4000 МГц. Для платформы AM4 разумный предел разгона находится в диапазоне между 3600-4000 МГц. LGA1151 разгоняется проще и лучше, позволяя достичь частоты памяти свыше 4000 МГц.

Для нашего теста мы будем использовать 2 диаметрально противоположных по свойствам комплекта памяти HyperX.

HyperX Predator DDR4 HX430C15PB3K4/64


Комплект состоит из 4 модулей по 16 ГБ каждый. В сумме 64 ГБ памяти на частоте 3000 МГц с таймингами 15-17-17, и напряжении 1.35В. Набор весьма привлекательный по цене. Купить его можно за 22-23 тысячи рублей. Частота не высокая и легко достижимая для любой платформы и процессора. В профилях для разгона содержится 2 XMP и один стандартный JEDEC:

HyperX Predator DDR4 HX446C19PB3K2/16


Комплект состоит из 2 модулей по 8 ГБ каждый. В сумме 16 ГБ памяти на частоте 4600 МГц с таймингами 19-26-26, и напряжении 1.5В. Для работы такого комплекта на заявленной частоте вам понадобится хорошая материнская плата, процессор Intel и удача. Дело в том, что память спокойно разгоняется до 4 ГГц без видимых осложнений с подбором правильных напряжений. Дальнейший разгон будет сдерживаться возможностями BIOS, разводки DIMM, способностями контроллера памяти в процессоре! Не все процессоры могут держать частоту памяти выше 4…4,2ГГц даже с поднятием напряжений Vccio и Vsa. Цены начинаются от 31-32 тысяч рублей.

В профилях для разгона содержится 2 XMP и один стандартный JEDEC:



Впрочем, именно этот комплект памяти был ограничен способностями платы ASUS Hero XI, и финальной частотой стало число 4300 МГц с заводскими таймингами. На платформе Z390/B550/X570 частоту в 4,6 ГГц можно достичь без особых затруднений.


Используя подготовленные производителем для разгона материнские платы, например, серия ASUS Apex или модифицированная Gene, данный комплект не только достигает заявленных характеристик, но и может выдавать 4600 МГц на гораздо более агрессивных таймингах.

Тестовый стенд


  • Материнская плата: ASUS ROG Maximus XI Hero (Intel Z390, LGA 1151 v2);
  • Процессор: Intel Core i9-9900К (Фиксированная частота 4500 МГц, HT вкл.);
  • Система охлаждения: система водяного охлаждения:

  • Операционная система: Microsoft Windows 10 x64 (2004);
  • Драйверы видеокарты, чипсета: последние на момент тестирования.

Объем используемой памяти в играх


Для проверки возьмем несколько популярных и свежих игр и понаблюдаем, сколько же памяти они используют?


Как видите, за редким исключением все помещаются в стандартные 16 ГБ и беспокоиться о недостатке памяти не нужно. Возможно, что-то поменяется, если мы попробуем провести аналогичный эксперимент, но в системе с 16 ГБ памяти, а не 64 ГБ? И снова мы увидим похожие цифры. А ответ в таких случаях кроется в разработчиках, прекрасно понимающих «среднюю конфигурацию» игроков. Но учтите, что тест проводился в идеально «чистых» условиях, без лишних приложений. В реальной жизни пользователи привыкли все ярлыки держать на рабочем столе, а число запущенных приложений редко бывает меньше 5-10. Плюс открытые вкладки в браузере и вот уже 16 Гб быстро исчерпались. Поэтому пока 16 Гб бывает достаточно, но запас свободной памяти с каждым годом будет уменьшаться. Покупая новую систему, стоит уже смотреть в сторону 32 Гб — скоро это «станет нормой» (с). Значит ли это, что памяти никоим образом не влияет на игровую производительность?

Игры, разрешения и частота памяти


Для понимания происходящего обратимся к сухим фактам. Более половины игроков все еще используют FullHD разрешение мониторов. Большая часть сидит на 4-ядерных процессорах. Усредненный объем оперативной памяти находится в промежутке между 8 и 16 ГБ. Если вы хотите ощутить влияние памяти на количество кадров в играх, то придется постараться.

Есть прямая зависимость: производительность процессора/видеокарты от разрешения/качества в игре. Ограничимся самым популярным FullHD, в нем влияние видеокарты и процессора распределяется в равной степени. Чем мощнее видеокарту вы используете, тем сильнее проявляется зависимость от связки процессор/память.


  • Фиксированный процессор, меняем видеокарту – синяя линия;
  • Фиксированная видеокарта, разгоняем память, меняем процессор – темно-зеленая линия;
  • Фиксированная видеокарта, меняем процессор – зеленая линия;
  • Фиксированный процессор, разгоняем память – черная линия.

Сколько кадров мы получим с высокочастотной памятью?

Нужно сразу пояснить, что максимальный и средний фремрейт из-за повышения частоты памяти меняются линейно и медленно. Наилучшая динамика наблюдается в регистре минимальных кадров в секунду. Там, при переходе со стандартных 2133-2400 МГц с распущенными таймингами на частоты 3600-4200 МГц и агрессивными таймингами повышается 1% мин. FPS. 1% мин. FPS – это один процент минимальных кадров и считается их среднее число. А насколько сильно он подрастает, зависит от игры. В более требовательных к графике играх ожидайте прибавки до 2-4%, в старых – до 15%. Естественно, максимальная польза от высокочастотной, настроенной памяти (тайминги первичные и вторичные) будет видна в низких разрешениях (FullHD) и с наиболее производительными процессорами и видеокартами.

Покупать ли дорогую память в ПК средней мощности?


Отбросим конфигурации с 6-12 ядерными процессорами, видеокартами Nvidia 20х0/Super, Radeon 5700/X и рассмотрим массовый сегмент игроков. Отбрасываем мы их потому, что большой объем видеопамяти видеокарт редко расходуется полностью. Поэтому в играх на топовых сборках ПК редко проявляется нехватка памяти. С другой стороны, именно для игр полезно устанавливать высокочастотную память, чтобы добавить совсем нелишние FPS. К массовому сегменту принято относить конфигурации с 4-ядерными процессорами и видеокартами уровня 1660 Super-GTX 2060 или Radeon 5600 (XT). Для них востребованным остается используемое разрешение FullHD. Переход от 2133-2400 МГц памяти на 3600-4200 МГц всегда сопровождается увеличением производительности в играх. Но она не столь выражена, как на более мощных конфигурациях. И снова мы возвращаемся к выбору игр для примера. Microsoft Flight Simulator (2020), Battlefield 1 (V) практически никак не отреагировали на память, в более «легкие» в плане графики отозвались 2-14% ростом минимального и среднего значения FPS. Не стоит забывать о принципах работы видеобуфера при нехватке Vmem. ОС создаст файл подкачки и выделит «виртуальное пространство» на HDD…со скоростью работы HDD. Рассматривать этот объем как полноценная замена памяти не стоит, ведь скорость обмена данными с ним очень низкая в сравнении с полноценной оперативной памятью. В результате для массовых конфигураций не стоит устанавливать DIMM совокупной емкостью менее 16 Гб, сейчас! А если вы параллельно с играми любите оставлять открытыми другие приложения, в том числе работающие в фоновом режиме и загружающие комплектующие, то пора смотреть в сторону 32 Гб.

Программы и память – все неоднозначно!

Лучшее применение большого объема памяти – это сервера. БД, бухгалтерские сервисы и т.п. потребляют уйму памяти, но на рынке присутствует масса комплектов для простых пользователей ПК. Минимальный объем актуальный на данный момент – 8 ГБ. Акцент постепенно сместился в сторону 16 ГБ и сейчас рекомендовать меньше просто опасно. Но что же с программами, неужели они, как и игры легко укладываются в типичные 16 ГБ?

Браузеры и интернет – растут быстрее всех! Всем нам известна вечная проблема раздувания в объемах интернет страниц с кучей рекламы и интерактивностью. Даже десяток окон в Google Chrome легко затормозит среднюю офисную машинку до состояния Spectrum’а. Не будем жаловаться на тенденции развития интернета и сайтов, а оценим, сколько влезет страниц в 16 ГБ систему…


Первая сотня страниц уместилась в 8 Гб и последующие 200 никак не превысили 12 ГБ включая работающие сервисы Windows 10. По мере закрывания страниц высвобождалась и память. Переключение между закладками происходило плавно и быстро. Так что 16 ГБ памяти хватает с избытком.


Соответственно в конфигурации с 64 Гб памяти ровно такое же поведение системы – быстрый отклик и гигабайты пустого пространства в памяти.


В популярном редакторе видео наличие 16 ГБ памяти сначала устраивает, но позже при работе операционная система начинает создавать файл подкачки и отзывчивость программы снижается: дольше применяются изменение в предпросмотре, интерфейс становится задумчивым. А представьте себе, что файл подкачки лежит не на быстром SSD, а на стандартном магнитном HDD! Постоянные подтормаживания растягиваются на неопределенное время!


В системе с 64 Гб памяти всегда остается запас, но Windows продолжает генерировать файл подкачки. Впрочем, сам Premiere чувствует себя прекрасно, как и его пользователь. А что на выходе? Работать комфортнее с 64 Гб памяти, но при рендере видео система с быстрой памятью и объемом в 16 ГБ сделала это быстрее на несколько минут. Вместо 1:05 мин мы получили готовое видео через 57 минут.

Проведем тест на выживаемость в Photoshop, открыв максимальное количество фотографий NEF, каждая размером 72-76 Мб, полученная с фотоаппарата Nikon D800. Сам по себе тест абсурден, т.к. не отражает реальную необходимость пользователей, но интересен своим результатом.


За 4 минуты 40 секунд открылось 150 фотографий и Photoshop их обработал. Нет ни зависаний, ни ошибок. А теперь по аналогии переходим к 16 Гб системе…


Через 4 минуты и 12 секунд программа автоматически закрылась, так как произошло следующее: как только израсходовалась пустая память в дело вступила система подкачки. Свап-файл постепенно рос, потом Windows попыталась сжать его и в результате закрылся Photoshop на 70 фотографии.


Компьютер — многозадачная система, если рассматривать каждый типичный процесс по отдельности, конечно, будет задействовано мало памяти. Попробуем открыть несколько фотографий, посмотреть и скачать архив с камер видеонаблюдения, а пока эти процессы происходят на заднем фоне, поработаем с нашими видео с телефона… Видно, что 16 Гб для этих задач УЖЕ не годятся. Какой бы частотой память не обладала, операционная система запихивает в 2 раза больше в свап-файл, который существенно тормозить отклик системы.


Спустя несколько минут сокращаем объем задач и запускаем игру. Фактически, все программы остаются в фоне и «архивируются» в свап-файл, не производя никаких вычислений внутри них. В играх все будет отлично с числом кадров. Стоит нам задействовать автоматический скрипт для пакетной обработки фото параллельно с игрой, и время выполнения задачи увеличивается в разы! 15 фото + игра на 16 Гб – 140-145 секунд. 15 фото + игра на 64 Гб – 90 секунд. А с ростом объема работ на заднем плане разница только будет увеличиваться.



В программах тестирования памяти разница между 3 ГГц и 4 ГГц не столь существенна и укладывается в несколько процентов. Тоже самое происходит и в 3DMark в тесте Time Spy (тест процессора, как наиболее зависимый результат от памяти).



Выводы


Что же важнее, объем или частота? Для игр – частота, при условии установленных не менее 16 Гб памяти в систему. А также не менее важно настроить у памяти и первичные и вторичные тайминги. В прикладных программах, а не синтетических бенчмарках, высокая частота памяти тоже оказывает свое влияние на результат. Сокращается время рендеринга, архивации и т.п., в любом программном обеспечении, где проявляется высокая зависимость от пропускной способности памяти. А для чего тогда нужен объем? Прежде всего, для комфортной работы с большими задачами. Это касается дизайнеров, монтажеров, редакторов. Особенно комфортно себя чувствуешь при работе с 4К видеоконтентом. Система практически не создает свап-файл для подкачки и редактор молниеносно отзывается на применение эффектов и фильтров. Наш тест с открытием более 100 NEF файлов средствами Photoshop скорее искусственный. Никто в здравом уме не будет открывать такое количество файлов в редакторе, но если возникнет необходимость, то 64 ГБ позволят это сделать. Поэтому, осмысленный подход к требуемому объему оперативной памяти – залог успеха.

Нетребовательные пользователи с минимальным числом вкладок, простые документы, просмотр фото/видео без редактуры – пока достаточно 8 Гб любой памяти на любой частоте.

Как оперативная память влияет на производительность процессоров AMD и Intel в играх?

Бытует мнение, что разница в производительности между высокочастотными модулями и обычной памятью с частотой 3200 MHz в играх составляет от силы 3 FPS, но на производительность памяти влияет не только ее частота, а еще и задержки.

С частотой все более-менее понятно — она больше влияет на пропускную способность памяти.

Память частотой 3200MHz может обработать 25600 МБ/сек информации.

Теоретическая пропускная способность для памяти с частотой 3200MHz (3200 МГц x 64 бит)/ 8 бит = 25600 Мбайт/сек

А память на частоте 4000MHz уже 32000 МБ/сек.

Теоретическая пропускная способность для памяти с частотой 4000MHz (4000 МГц x 64 бит)/ 8 бит = 32000 Мбайт/сек

Согласитесь, разница существенная.

А вот задержки для данных частот вполне могут быть одинаковые. Вы спросите, как так?

Задержка для памяти с частотой 3200MHz и таймингами CL16 будет работать со скоростью 16*2000/3200 = 10 нс.

Как правило, с ростом частоты увеличиваются и тайминги. Соответственно для частоты 4000 MHz обычными таймингами являются 19-19-19, что эквивалентно 9,5 нс.

Задержка для памяти с частотой 4000 MHz и таймингами CL19 будет работать со скоростью 19*2000/4000 = 9,5 нс.

В итоге разница в задержке между высокочастотными и обычными модулями составляет всего 0,5 мс или 5%.

Меньшая задержка позволяет быстрее считать или записать данные в ячейку памяти, а затем доставлять их в процессор для обработки.

Сегодня мы сравним влияние оперативной памяти на процессоры AMD и Intel, а именно:

  • влияние частоты оперативной памяти на производительность при условно равных задержках;
  • влияние таймингов/задержек на производительность оперативной памяти;
  • влияние XMP профиля с разной частотой и таймингами на производительность памяти и сравнение с работой по стандарту JEDEC;

Данное тестирование не подразумевает разгон, ковыряние и фиксацию десятка таймингов, это сравнение работы памяти из коробки как оно есть, соответственно и тайминги будут затронуты только те, что меняются при активации XMP профиля.

Тестовая платформа AMD

Тестовая платформа Intel

Влияние частоты оперативной памяти на производительность при условно равных задержках

Начнем тестирование с синтетического бенчмарка AIDA64 а далее будем изучать влияние на проивзодительность в играх.

Результаты тестирования на платформе AMD





Результаты тестирования на платформе Intel





Изменение частоты оперативной памяти хорошо сказывается на всех 4 показателях производительности памяти, но в большей степени выигрывает именно пропускная способность.

На платформе AMD частота так же положительно влияет на Latency, что нельзя сказать о платформе Intel, где изменение заметны только в операциях копирования, чтения и записи.

В играх ситуация повторяется, наибольший эффект если можно так сказать, заметен только на платформе AMD, платформа Intel же практически никак не реагриует на рост пропускной способности памяти.

Влияние таймингов/задержек на производительность оперативной памяти

Результаты тестирования на платформе AMD





Результаты тестирования на платформе Intel





Тайминги также оказывают влияние на пропускную способность памяти, но их влияние на задержки значительно больше. Причем, это влияние, в равной степени распространяется на обе платформы.

Изменение игровой производительности носит больше косметический характер, однако показатели 0,1% вплотную приближаются к показателям на частоте 3800MHz с таймингами CL 19 из предыдущего теста, хотя и слегка недотягивая до значений по среднему FPS.

Влияние XMP профиля на производительность памяти

У нас в наличии имеется 3 комплекта оперативной памяти от разных производителей чипов памяти.

Комплект G.SKILL F4-3000C14-16GVR 2 x 16GB) с профилем XMP 3000 MHz и таймингами 14-14-14-32 набран чипами Samsung B-Die.

Эти три производителя занимают примерно 90% рынка оперативной памяти. Именно эти чипы наиболее часто встречаются в продаже.

У каждого из производителей есть свои сильные и слабые стороны.

Samsung B-Die - это лидер по производительность и разгону, но с высокой ценой, Micron имеет неплохой разгон, но из-за своей популярности встретить данную память в продаже особенно по адекватной цене достаточно сложно, Hynix также имеет неплохой разгон, но лотерея в качестве чипов достаточно высока, зато всегда есть в продаже и по демократичной цене.

Результаты тестирования на платформе AMD





Результаты тестирования на платформе Intel





Синтетический бенчмарк AIDA64 на платформе AMD отдает предпочтение памяти с более высокой тактовой частотой, превосходство комплекта памяти G.Skill SNIPER X с частотой 3600MHz безоговорочно и составляет от 10 до 15%. На платформе Intel комплект G.Skill SNIPER X так же лидирует но в тесте на задержки устапует комплекту G.SKILL F4-3000C14 с частотой 3000 MHz.

Однако в играх результат не выглядит столь впечатляющим, разница между памятью, работающей на частоте 3000MHz и 3600MHz составляет считанные проценты, что сложно назвать стоящем особенно на фоне цены высокочастотных модулей.

Выводы

Память, как и любой другой компонент системы, оказывает влияние на производительность компьютера. При выборе очередного комплекта нужно обращать внимание не только на частоту, но и на тайминги. Именно комбинация высокой частоты и низких таймингов оказывает наибольшее влияние на производительность, высокая частота дает возможность перегонять огромные объемы информации, а низкие задержки позволяют быстрее считывать или записать данные в ячейку памяти. Именно эти две составляющие и формируют понятие производительности памяти.

Активируя XMP профиль оперативной памяти, можно получить хороший рост производительности по сравнению с работой памяти по стандарту JEDEC.

XMP профиль памяти изменяет только первичные тайминги, чего явно недостаточно для получения максимального результата. Используя ручной разгон с тюнингом всех таймингов можно добиться куда более впечатляющих результатов.

В данном обзоре будет изучено влияние частоты оперативной памяти DDR3 на производительность актуальных процессоров.

Для этого были взяты следующие модели ЦП:

  • Core i7-3770К;
  • Core i3-3240;
  • FX-8320;
  • A10-5800K.

Работать они будут в связке с оперативной памятью, функционирующей на следующих частотах:

Дешевая 3070 Gigabyte Gaming - успей пока не началось
  • DDR3 2133 МГц;
  • DDR3 1866 МГц;
  • DDR3 1600 МГц;
  • DDR3 1333 МГц;
  • DDR3 1066 МГц.

В графическую подсистему вошли видеокарты GeForce GTX 780 3072 Мбайт и Radeon R9 290X 4096 Мбайт. Сделано это для того, чтобы наиболее полно изучить поставленную цель материала.

Тестовая конфигурация

Тесты проводились на следующем стенде:

  • Материнская плата №1: GigaByte GA-Z77X-UD5H, LGA 1155, BIOS F14;
  • Материнская плата №2: GigaByte GA-990FXA-UD5, АМ3+, BIOS F12;
  • Материнская плата №3: ASRock FM2A85X Extreme4, FM2, BIOS 1.70;
  • Видеокарта №1:GeForce GTX 780 3072 Мбайт - 863/6008 МГц (Palit);
  • Видеокарта №2:Radeon R9 290X 4096 Мбайт - 1000/5000 Мбайт (Sapphire);
  • Система охлаждения CPU: Corsair Hydro Series H100 (

  • Core i7-3770К @ 4600 МГц;
  • Core i3-3240 @ 3400 МГц;
  • FX-8350 BE @ 4600 МГц;
  • A10-5800K @ 4500 МГц.

реклама

Программное обеспечение:

  • Операционная система: Windows 7 x64 SP1;
  • Драйверы видеокарты: NVIDIA GeForce 335.23 WHQL и AMD Catalyst 14.3 Beta.
  • Утилиты: FRAPS 3.5.9 Build 15586, AutoHotkey v1.0.48.05, MSI Afterburner 3.0.0 Beta 19.

Инструментарий и методика тестирования

Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешении 1280х1024.

В качестве средств измерения быстродействия применялись встроенные бенчмарки, утилиты FRAPS 3.5.9 Build 15586 и AutoHotkey v1.0.48.05. Список игровых приложений:

Во всех играх замерялись минимальные и средние значения FPS. В тестах, в которых отсутствовала возможность замера минимального FPS, это значение измерялось утилитой FRAPS. VSync при проведении тестов был отключен.

Разгон процессоров

Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 «Perestroika» путем получасового прогона ЦП на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых CPU не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

При максимальном разгоне у всех процессоров AMD частота контроллера памяти была поднята до 2400-2800 МГц.

Core i7-3770К

Процессор разогнан до частоты 4600 МГц. Для этого множитель был поднят до 46 (100х46), напряжение питания – до 1.2 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – выключен, Hyper Threading – выключен.

  • Частота DDR3 – 2133 МГц (100х21.33);
  • Частота DDR3 – 1866 МГц (100х18.66);
  • Частота DDR3 – 1600 МГц (100х16.0);
  • Частота DDR3 – 1333 МГц (100х13.33);
  • Частота DDR3 – 1066 МГц (100х10.66).

Core i3-3240

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), напряжение питания 1.1 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

  • Частота DDR3 – 2133 МГц (100х21.33);
  • Частота DDR3 – 1866 МГц (100х18.66);
  • Частота DDR3 – 1600 МГц (100х16.0);
  • Частота DDR3 – 1333 МГц (100х13.33);
  • Частота DDR3 – 1066 МГц (100х10.66).

реклама

Процессор разогнан до частоты 4600 МГц. Для этого множитель процессора был поднят до значения 23 (200х23), напряжение питания ядра – до 1.53 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – выключены.

  • Частота DDR3 – 2133 МГц (200х10.66);
  • Частота DDR3 – 1866 МГц (200х9.33);
  • Частота DDR3 – 1600 МГц (200х8.0);
  • Частота DDR3 – 1333 МГц (200х6.66);
  • Частота DDR3 – 1066 МГц (200х5.33).

Процессор разогнан до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 45 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – выключены.

Привет Пикабу! Последние несколько лет в сети разгораются жаркие споры о том, нужна ли быстрая память игровому ПК и так ли важны ее тайминги. В этой статье мы расскажем, стоит ли так внимательно смотреть на тайминги и какая частота оптимальна, а так же сколько ОЗУ нужно именно вам. Как всегда - текстовая версия под видео.

В случае с процессорами AMD Ryzen все понятно — там внутренняя шина напрямую зависит от частоты ОЗУ, так что чем последняя больше, тем быстрее передаются данные между кластерами ядер и тем быстрее работает CPU.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Но в случае с Intel такого нет, кольцевая шина этих процессоров не зависит от частоты ОЗУ. К тому же большая часть игровых ноутбуков работает на медленной памяти с частотой 2400-2666 МГц без каких-либо проблем в играх, как и многие относительно старые топовые Core i7, которые вообще пашут вместе с DDR3 на частоте 1600 МГц и в ус не дуют. Чтобы этот обзор был полезен обоим лагерям, мы расскажем, так ли нужна быстрая память для современного игрового ПК на процессоре Intel, нужно ли так внимательно обращать внимание на тайминги и сколько оперативной памяти нужно современному ПК для игр и работы. Посмотрим, так ли нужны низкие тайминги, и как FPS в тяжелых играх зависит от частоты ОЗУ.

Минутка теории

В этой статье мы будем рассматривать реальную игровую систему с реальными настройками графики. Иными словами, не будет никаких тестов в HD с минимальным пресетом, чтобы максимально нагрузить процессор — все игровые бенчмарки прогонялись в народном разрешении 1920х1080 на максимальных настройках, чтобы упор был именно в видеокарту. В противном случае, если упор идет в процессор, низкий FPS будет еще терпимой проблемой — вы скорее всего будете получать фризы и непрогруженные текстуры. Конечно, если вы суровый челябинский геймер, едва ли это вас остановит, но мы все же рассматриваем реальные игровые условия.

Также мы рассматриваем ситуацию, когда видеокарте хватает собственной памяти — в противном случае вы опять же можете столкнуться с проблемами производительности в играх, и быстрая ОЗУ едва ли вас спасет, потому что она все еще будет чуть ли не на порядок медленнее видеопамяти. Перейдем к тестовой системе.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Что будет, если задрать тайминги в облака?

Первое, что мы проверим — что будет, если мы очень сильно увеличим тайминги ОЗУ. Что же это такое? По сути оперативная память — это набор ячеек, которые могут хранить 0 или 1. Однако процессору, чтобы добраться до определенной ячейки, нужен ее точный адрес — банк памяти, строка и столбец. Тут все очень похоже на реальные адреса — на письме вы должны указать город, улицу, дом и лишь потом только квартиру.

При это процессор — очень ответственный почтальон, он должен точно знать, сколько у него займет по времени обращение к определенной ячейке. И как раз это время и есть тайминг, и всего выделяют 4 основных или первичных, а также с десяток вторичных и нередко под полсотню третичных. Максимальный вклад в быстродействие памяти дают именно первичные тайминги, поэтому именно их мы и будем рассматривать.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

И, очевидно, чем тайминги меньше, тем быстрее процессор сможет добираться до нужных ячеек и тем быстрее он будет работать с ОЗУ, поэтому выглядит разумным покупать тот комплект памяти, у которого минимальные задержки на своей частоте.

Итак, тест памяти и кэша в AIDA64 показал, что при таком завышении таймингов слегка снизилась скорость копирования и на 10% увеличилась задержка доступа к ОЗУ. Последнее как раз и было ожидаемо с учетом того, что мы сильно увеличили тайминги, но в общем и целом падение сложно назвать катастрофическим.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Ладно, а как себя поведет игра World War Z на API Vulkan? Он низкоуровневый и в теории может лучше работать с железом. Но и здесь разницы нет — что с оптимизированными, что с задранными таймингами FPS непоколебим и составляет 180.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Может в Far Cry New Dawn картина изменится, как-никак эта игра не очень хорошо оптимизирована под многопоток? И да, разница действительно есть, но ее сложно назвать значительной — средний FPS при увеличении таймингов снизился с 125 до 122, то есть лишь на 2%.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Какой отсюда можно сделать вывод? Даже если поставить откровенно гипертрофированные тайминги, разница в FPS минимальна или ее нет совсем. С учетом того, что продающиеся наборы ОЗУ нередко уже из коробки имеют неплохие тайминги для своей частоты, нет никакого смысла переплачивать за дорогие комплекты с небольшими задержками — вы едва ли уловите разницу в FPS. И это же, в теории, касается процессоров AMD.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Почему так происходит? Все просто — подавляющее большинство современных и не очень процессоров и имеют по три или даже четыре уровня кэша. И информация из ОЗУ заранее пишется в кэш, и лишь потом с ней работает CPU. А с учетом того, что кэша третьего уровня много, нередко пара десятков мегабайт, влияние задержек доступа к памяти становится минимальным.

Играемся с частотой памяти

Окей, а есть ли вообще смысл в большой частоте ОЗУ? Мы решили проверить три варианта. Первый — это DDR4-2133, минимальная пользовательская частота для последнего поколения памяти. Да, вы можете сказать, что большая часть процессоров даже на неразгонных платах поддерживает частоту хотя бы 2400 МГц, но мы решили пойти по самому минимуму и рассмотреть вариант, когда в компьютере стоит самая дешевая память с AliExpress.

Второй вариант — это DDR4-2933. Именно такую память способны поддерживать современные процессоры Intel Core 10-ого поколения, они же Comet Lake, на всех платах даже без разгона. С учетом того, что возможности по оверклокингу у таких процессоров чисто номинальные и вы от силы получите несколько лишних процентов производительности, возникает вопрос — а есть ли вообще смысл переплачивать за платы на чипсете Z490, раз CPU почти не гонится, и остается только разгон памяти?

Ну и третий вариант — это текущая конфигурация на DDR4-3400. Такая частота доступна подавляющему большинству современных процессоров Intel, даже если это урезанные Core i3, при этом планки на ней стоят вменяемых денег.

Для начала — все тот же тест ОЗУ из AIDA64. Тут уже падение скоростей чтения и записи сложно назвать слабым — шутка ли, DDR4-3400 быстрее стоковой DDR4-2133 в полтора раза. А вот задержки увеличились не очень сильно, приблизительно на 20% — сказывается то, что тайминги в обоих случаях были неплохо оптимизированы.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Перейдем к тестам в играх, и начнем с все той же Assassin's Creed Odyssey. Падение частоты больше чем на 20%, с 3400 до 2933 МГц, игра просто не заметила — средний FPS не изменился совершенно. А вот на DDR4-2133 игра уже выдала только 93 кадра в секунду, то есть падение производительности составило порядка 5%.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

В World War Z API Vulkan показывает, что он дейсвительно ближе к железу, чем DirectX — уже на 2933 МГц мы видим падение частоты кадров с 180 до 178, а на 2133 МГц мы получаем только 169 FPS. Иными словами, максимальная потеря кадров составила 7% — не так уж и мало.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Ну и переходим к Far Cry New Dawn, и вот тут даже переход на DDR4-2933 снижает FPS на пару процентов, а на DDR4-2133 вы не досчитаетесь уже 13 кадров в секунду, что составляет 11% — достаточно внушительная потеря.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Какой можно сделать вывод? DDR4-2133 для игр брать точно не стоит, во всех протестированных играх такая память ощутимо снижает итоговый FPS. А вот DDR4-2933 показывает себя на удивление неплохо — я ожидал, что в тяжелом Assassin-е будут просадки частоты кадров, но их там не было от слова совсем. Так что Intel не зря выбрала такую частоту дефолтной для своих псевдо новых процессоров — память на ней едва ли будет узким местом в системе.

Что касается обьема ОЗУ, совсем недавно популярный зарубежный Youtube-канал Linus Tech Tips, подтвердил, то, о чем мы уже не раз говорили, объём DDR4 в 4GB почти непригоден для использования, так как после простой загрузки Windows 10 половина памяти уже была занята.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

С 8 гигабайтами ОЗУ работать становиться куда приятней. Можно смело запускать 3 ролика в 4K или 27 простых вкладок. В играх потребление памяти зависит от конкретного тайтла, но 16 Гб можно смело назвать золотой серединой. C 8 Gb ОЗУ тоже жить можно, но при этом файл подкачки используется на 20% от своего объёма, так что для дополнительных фоновых процессов неплохо бы обзавестись китом памяти на 16 Gb.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Дальнейшее наращивание объёма оперативной памяти не даёт почти никакого эффекта. Этих же 16 Гб будет сполна хватать для рендера, 32 Gb ОЗУ может понадобиться либо профессионалам, либо если вы любите открывать все и сразу.

Частота vs тайминги - что важнее? Сколько нужно ОЗУ? Оперативная память, Ddr4, Компьютер, Видео, YouTube, Длиннопост

Более 32 Gb может потребоваться художникам и создателям контента, которые держат открытыми сразу несколько рабочих программ.

Ну и глобальный итог — нет особого смысла гнаться за очень быстрой памятью. Если между DDR4-2933 и DDR4-3400 разницу уже нужно искать под лупой, то уж при переходе на DDR4-4000 вам потребуется микроскоп. А ведь стоит последняя достаточно дорого, и, сэкономив на ней, вы вполне можете взять более быструю видеокарту и гарантированно получить прирост производительности в играх.

Так что на данный момент имеет смысл остановиться на 8 или лучше 16 Гб памяти с частотой около 3 ГГц, причем не нужно дополнительно ужимать тайминги, стандартного XMP-профиля вполне хватит.

Читайте также: