Что делает web сервер получив запрос от вашего интернет браузера

Обновлено: 04.07.2024

В статье про устройство веба и как происходит серфинг я упомянул, что браузер отправляет запрос к веб-серверу. Но что представляет из себя запрос? Это куча машиночитаемых квантовых кодов и сингулярных шифров? Программистская магия? Вовсе нет.

  • При встрече на протянутую руку принято отвечать рукопожатием. Отсутствие рукопожатия — это тоже ответ, иногда даже более красноречивый, чем само рукопожатие.
  • Девушкам же руку не протягивают — это тоже часть протокола. Можно и им руку протянуть, но в большинстве случаев не поймут, а в некоторых странах заставят жениться.
  • Электрические розетки — хотя в разных странах они разные, внутри одной страны они одинаковы.
  • Разъёмы для кабелей — USB type B, USB type C, mini USB, micro USB. Производители приняли внегласный протокол и производят кабели и устройства именно таких форматов, иначе при прочих равных пользователи их не поймут и не будут покупать их продукцию (исключение — Apple).
  • Правила дорожного движения — знаки, разметка и светофоры помогают пешеходам дойти, а автомобилистам доехать до места назначения без происшествий.
  • Формы налоговых деклараций и прочих бюрократических документов.

Любой из протоколов нас ни к чему не обязывает, это не ГОСТ, он лишь рекомендует поступать так или иначе, если мы хотим добиться желаемой цели — понимания от окружающих людей, одобрения от покупателей, сохранения продаж, избежания аварий и штрафов, получения веб-страницы от сервера.

Чтобы понять, как браузер общается с сервером, нужно думать как браузер, нужно стать браузером.

Порты — это как номера квартир в доме. Чтобы доставить письмо, почтальону нужно знать не только дом, но и номер квартиры. Причём в некоторых квартирах почтальону ответят, если он в них постучится, а другие — нет, потому что там никто не живёт. А кто-то ответит, что адресат уже давно здесь не живёт и дадут новый адрес почтальону (редирект запроса).

В компьютерных сетях всё точно также. На одном адресе (IP или доменном имени) могут висеть и ожидать запросов несколько портов одновременно. Чтобы избежать путаницы, сообщество разработчиков договорилось для наиболее популярных серверов выделять одни и те же порты: SSH — 22, FTP — 21, база данных MySQL — 3306, веб-сервера — 80. Это лишь соглашение и рекомендация, можно поднять какой угодно сервер на каком угодно порту, но для клиентов это скорее всего станет неожиданностью.

Введём в терминале такие строки запроса.

После этого браузер разбирает ответ, убирает техническую информацию и отображает html-страницу в кодировке UTF-8 — так ему сказал сервер в заголовке Content-Type. Если в HTML включены CSS, Javascript, картинки, то браузер запросит их отдельными запросами ровно таким же образом. Если он их уже запрашивал раньше, то возьмёт из локального кэша. Поэтому первый раз страницы грузятся визуально дольше.

Разберём структуру запроса и ответа более детально.

Каждый запрос имеет один и тот же формат:

протокол

Относительный путь (без доменного имени) до документа. В нашем примере указан корень /, но путь может быть любым: /index.php, /catalog/food/milk. Под документом понимаются не только файлы с расширением .html, но и любые другие файлы, например картинки, .css, .js.

метод

Определяет, что веб-сервер должен сделать с документом, найденным по указанному «/пути».

На практике примерно 80% запросов приходится на GET, 15% — на POST и 5% — на все остальные методы.

Заголовки

Они опциональны (в нашем примере их не было вовсе) и подсказывают веб-серверу, как именно нужно обработать запрос. Например, что клиент отправляет запрос в виде текста с кодировкой utf-8, а ожидает получить json в кодировке cp1251.

Наиболее частые на практике заголовки:

  • Accept — в каком формате ожидаем ответ: обычный текст, html, xml, json, что угодно ещё.
  • Accept-Charset — кодировка тела запроса: utf8, cp1251, koi8.
  • Authorization — данные для авторизации между запросами. Здесь чаще всего передаются токены API. Авторизация между запросами будет рассмотрена ниже.
  • Accept-Language — список языков, которые нас бы устроили. Например: «Accept-Language: ru».
  • Cache-Control — настройки кэширования страниц
  • Cookie — известные браузеру куки. В них сохраняются идентификаторы сессий и пользовательские предпочтения.
  • Referrer — с какой страницы был сделан текущий запрос. Полезно для аналитики сайта и для возвращения юзера на первоначальную страницу после регистрации, например.
  • User-Agent — тип клиента (чаще всего тип вашего браузера). Пример: «Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.163 Safari/537.36». Это поле часто используется на сервере, чтобы отслеживать количество запросов с одного устройства и блокировать их при превышении лимита. Однако это не панацея, ведь после блокировки злоумышленник может поменять User-Agent на любой другой.

Обратите внимание, что POST запрос очень похож на GET, мы даже обращаемся к тому же документу «/». Однако есть и отличия:

  • вместо второй пустой строки в конце запроса содержатся данные: «name=Max»
  • эти данные могут быть в разном формате, поэтому мы должны явно указать веб-серверу, что это данные из формы — application/x-www-form-urlencoded
  • также мы сообщаем серверу, что в теле запроса содержится ровно 8 символов — «Content-Length: 8». Это техническое поле, которое браузер выполняет на лету, а нам приходится считать самим.

Можно заметить, что структура ответа похожа на структуру запроса. Но есть несколько нюансов. Первая строка ответа выглядит иначе:

протокол

Значение поля то же самое, что и в запросе. Но может отличаться от версии, что запросил браузер, если веб-сервер её не понимает.

статус и пояснение

Статусов больше сотни, но не все их них используются браузерами. Некоторые предусмотрены на далёкое будущее, а некоторые слишком специфичны.

Первая цифра статуса указывает на класс:

заголовки

Заголовки сервера выполняют ту же роль, что и заголовки запроса. Есть общие заголовки, как Cache-Control, но есть и свои уникальные.

Тело ответа также отделяется от группы заголовков пустой строкой. При этом в теле может передаваться что угодно — текст, html, json, xml, картинки и прочие файлы. Все они отдаются браузеру в одинаковом формате, но с отличающемся заголовком Content-Type, который и поясняет браузеру, как отобразить контент пользователю: как html-страницу, как картинку, показать встроенный в браузер PDF-просмотрщик или начать скачивание файла.

Про аутентификацию и авторизацию

В жизни это ограничение обходят двумя путями:


Вторая версия протокола отличается от первой чуть меньше, чем полностью.

Простыми словами объясняем, как браузер подключается и общается с сервером.

Поэтому первым делом браузеру нужно понять, какой IP-адрес у сервера, на котором находится сайт.

Такая информация хранится в распределенной системе серверов — DNS (Domain Name System). Система работает как общая «контактная книга», хранящаяся на распределенных серверах и устройствах в интернете.

Однако перед тем, как обращаться к DNS, браузер пытается найти запись об IP-адресе сайта в ближайших местах, чтобы сэкономить время:

  • Сначала в своей истории подключений . Если пользователь уже посещал сайт, то в браузере могла сохраниться информация c IP-адресом сервера.
  • В операционной системе . Не обнаружив информации у себя, браузер обращается к операционной системе, которая также могла сохранить у себя DNS-запись. Например, если подключение с сайтом устанавливалось через одно из установленных на компьютере приложений.
  • В кэше роутера , который сохраняет информацию о последних соединениях, совершенных из локальной сети.

Не обнаружив подходящих записей в кэше, браузер формирует запрос к DNS-серверам, расположенным в интернете.

Как только браузер узнал IP-адрес нужного сервера, он пытается установить с ним соединение. В большинстве случаев для этого используется специальный протокол — TCP.

TCP — это набор правил, который описывает способы соединения между устройствами, форматы отправки запросов, действия в случае потери данных и так далее.

Например, для установки соединения между браузером и сервером в стандарте TCP используется система «трёх рукопожатий». Работает она так:

  • Устройство пользователя отправляет специальный запрос на установку соединения с сервером — называется SYN -пакет.
  • Сервер в ответ отправляет запрос с подтверждением получения SYN-пакета — называется SYN/ACK -пакет.
  • В конце устройство пользователя при получении SYN/ACK-пакета отправляет пакет с подтверждением — ACK -пакет. В этот момент соединение считается установленным.

Задача браузера — как можно подробнее объяснить серверу, какая именно информация ему нужна .

Сервер получил запрос от браузера с подробным описанием того, что ему требуется. Теперь ему нужно обработать этот запрос. Этой задачей занимается специальное серверное программное обеспечение — например, nginx или Apache. Чаще всего такие программы принято называть веб-серверами.

Когда ответ сформирован, он отправляется веб-сервером обратно браузеру. В ответе как правило содержится контент для отображения веб-страницы, информация о типе сжатия данных, способах кэширования, файлы cookie, которые нужно записать и так далее.

👉 Чтобы обмен данными был быстрым, браузер и сервер обмениваются сразу множеством небольших пакетов данных — как правило, в пределах 8 КБ. Все пакеты имеют специальные номера, которые помогают отслеживать последовательность отправки и получения данных. 8. Браузер обрабатывает полученный ответ и «рисует» веб-страницу

Браузер распаковывает полученный ответ и постепенно начинает отображать полученный контент на экране пользователя — этот процесс называется рендерингом .

Сначала браузер загружает только основную структуру HTML-страницы. Затем последовательно проверяет все теги и отправляет дополнительные GET-запросы для получения с сервера различных элементов — картинки, файлы, скрипты, таблицы стилей и так далее. Поэтому по мере загрузки страницы браузер и сервер продолжают обмениваться между собой информацией.

Параллельно с этим на компьютер как правило сохраняются статичные файлы пользователя — чтобы при следующем посещении не загружать их заново и быстрее отобразить пользователю содержимое страницы.

Как только рендеринг завершен — пользователю отобразится полностью загруженная страница сайта.

Содержание

Краткая характеристика

Понятие "Веб-сервер" может относится как к к самому серверу, как физическому хранилищу, так и к программному обеспечению.

Чтобы опубликовать веб-сайт, нужно либо статический, либо динамический веб-сервер.


Например, для получения итоговой страницы, которую вы видите в браузере, сервер приложений может заполнить HTML шаблон данными из базы данных. Такие сайты, как MDN (Mozilla Developer Network) или Википедия состоят из тысяч веб-страниц, но они не являются реальными HTML документами, лишь несколько HTML шаблонов и гигантские базы данных. Эта структура упрощает и ускоряет сопровождение веб-приложений и доставку контента.

Цель и функции веб-сервера

Цель веб-сервера проста - обслуживать одновременно большое количество клиентов, максимально эффективно используя hardware.

Любой веб сервер, для удобства его использования пользователями, должен иметь удобный веб-браузер. Он передает веб серверу запросы, преобразованные в URL-адреса интернет - ресурсов.

Хостинг файлов

Во-первых, веб-сервер хранит файлы веб-сайта, а именно все HTML документы и связанные с ними ресурсы, включая изображения, CSS стили, JavaScript файлы, шрифты и видео.

Технически, вы можете разместить все эти файлы на своем компьютере, но гораздо удобнее хранить их на выделенном веб-сервере, который [2] :

  • всегда запущен и работает
  • постоянно в сети Интернет
  • имеет тот же IP адрес все время (не все провайдеры предоставляют статический IP адрес для домашнего подключения)
  • обслуживается на стороне

По всем этим причинам, поиск хорошего хостинг-провайдера является ключевой частью создания вашего сайта. Рассмотрите различные предложения компаний и выберите то, что соответствует вашим потребностям и бюджету (предложения варьируются от бесплатных до тысяч долларов в месяц).

Популярные веб-сервера


Ядро, написанное на языке программирования C, в чьи функциональные возможности входит:

Система текстовой конфигурации, состоящая из трех уровней:

Мультипроцессорные модели (MPM), которые используются для работы с различными серверными операционными системами.(worker, pre-fork и др.) Система модулей для обеспечения:

  • Поддержки языков программирования.
  • Добавления функций.
  • Исправление ошибок или модификация основных функций.
  • Усиления безопасности.

Механизм виртуальных хостов, он позволяет полноценно обслуживать на одном IP-адресе множество сайтов (доменных имён), отображая для каждого из них собственное содержимое.

Apache Tomcat

Apache Tomcat - это контейнер, который позволяет вам использовать интернет приложения такие, как Java сервлеты и JSP (серверные страницы Java). Пакеты Apache Tomcat 6.0 в Ubuntu поддерживают два варианта запуска Tomcat [4] :

  1. Использовать Tomcat как классический одиночный экземпляр на всю систему, который будет запускаться при загрузке системы от имени непривилегированного пользователя tomcat6.
  2. Развернуть частные экземпляры, которые будут запускаться с правами вашего собственного пользователя, и вам придется запускать и останавливать их самостоятельно.


nginx



На собеседованиях мы часто просим кандидата рассказать настолько подробно, насколько он может, что происходит, когда вводишь в адресной строке браузера адрес сайта и нажимаешь кнопку “Ввод”. В зависимости от того, кого собеседуем — фронтендщика или бекендщика — мы ожидаем разные ответы. А как бы выглядел идеальный ответ на этот вопрос? Ниже мой вариант ответа.

Итак, пользователь вводит в адресной строке браузера адрес сайта и нажимает кнопку “Ввод”.

Браузер состоит из нескольких компонентов, одним из которых является User Interface. Адресная строка как раз является одной из частей этого компонента.

User Interface после ввода URL в адресной строке передаёт управление компоненту Browser Engine, который отвечает за взаимодействие различных компонентов браузера.

Чтобы сделать запрос по указанному URL, браузеру нужно знать IP сервера. Первым делом он смотрим в свой локальный кэш DNS.Компонент Browser Engine как раз имеет доступ к этому кэшу.

Если там нет соответствующей записи, то браузер передаёт управление операционной системе, которая проверяет свой кэш DNS. Если и там отсутствует соответствующая запись, то ОС смотрит в локальные хосты (файл /etc/hosts в Unix-системах). Если запись о хосте отсутствует, то операционная система обращается к интернет провайдеру, у которого тоже есть свой кэш DNS на своих рекурсивных серверах DNS. В случае отсутствия записи в кэше на серверах DNS провайдера, запрос идёт на корневой DNS. У корневого DNS тоже есть кэш. Если соответствующей записи в кэше корневого DNS нет, запрос идёт дальше по цепочке серверов DNS.

Если на любом из этапов находится нужная запись, то она сохраняется во всех кэшах и управление возвращается браузеру, который уже знает IP нужного сервера.

Процесс получения IP адреса называется DNS lookup.

На сервере запрос принимает веб-сервер (например, nginx или apache).

В конфигурационных файлах веб-сервера прописаны обслуживаемые хосты. Веб-сервер достаёт хост из заголовка запроса host и сопоставляет с теми, которые указаны в конфигурации. Если есть совпадение, то веб-сервер находит в конфигурационном файле правила обработки такого запроса и выполняет их. Дальнейшее поведение сервера зависит от технологии и особенностей приложения. Здесь может происходить работа с базами данных, кэшами, запросы к другим серверам и сервисам, выполнение различных скриптов. Для простоты представим, что приложение сгенерировало файл HTML, и веб-сервер отдал его браузеру.

Заголовки ответа сервера можно увидеть в Chrome DevTools на вкладке Networking, выбрав нужный запрос

Если длина контента больше нуля и тип контента поддерживается браузером, то браузер пытается его обработать. В нашем случае браузер получает файл HTML с соответствующим заголовком Content-Type. Браузер начинает разбор (parsing) этого файла с первой инструкции, которой является инструкция <!DOCTYPE>. DOCTYPE указывает на версию HTML, чтобы браузер понимал, каким правилам следовать во время разбора (какие теги как обрабатывать).

Если DOCTYPE отсутствует, то браузер переключится в режим quirks mode и попытается разобрать документ HTML, однако многие элементы будут проигнорированы. Если указан корректный DOCTYPE, то браузер будет работать в standards mode и будет разбирать документ в соответствии с правилами той версии, которая указана в DOCTYPE.

Rendering Engine начинает разбор документа HTML.

Создаётся DOM (Document Object Model). В браузере этот объект доступен по ссылке, которая хранится в переменной document. У документа есть несколько состояний. Первое состояние — loading. Оно означает, что документ только начал формироваться.

Состояние документа хранится в переменной document.readyState.

Также создаётся объект styleSheets, который будет хранить все стили.

Все стили на странице доступны по ссылке, которая хранится в переменной document.styleSheets.

Любой файл — это набор байтов. Браузер берёт полученный набор байтов и преобразует их в символы по таблице символов в соответствии с кодировкой, которая была передана в заголовке Content-Type. В нашем примере это кодировка UTF-8.

Следующий процесс —разбивание текста на смысловые блоки (tokenization). Так браузер распознаёт теги <html>, <head> и проч., а также понимает, какие правила к какому тегу применять (например, поддерживаемые атрибуты).

Далее токены собираются в узлы (nodes). Эти узлы и сохраняются в DOM со всеми взаимными связями.

Во время разбора, если Rendering Engine встречает ссылку на внешний ресурс, то он передаёт команду загрузить этот ресурс компоненту Networking Component. Это может быть ссылка на стили, скрипты, картинки и т.п. Networking Component ставит все ресурсы в очередь на загрузку. Каждому ресурсу Networking Component присваивает приоритет.

Приоритеты ресурсов можно посмотреть в Chrome DevTools на вкладке Networking в колонке Priority.

Так, у HTML, CSS и шрифтов самый высокий приоритет. У изображений приоритет изначально низкий, но если Rendering Engine обнаружит, что изображение попадает в поле видимости (view port) пользователя, то повысит приоритет до среднего. Приоритет скрипта зависит от положения на странице и способа загрузки. У асинхронных скриптов (async/defer) низкий приоритет. У скриптов, которые в документе перед изображениями — высокий, у тех, что после хотя бы одного изображение — средний.

По возможности браузер пытается загружать ресурсы параллельно. Однако, он не может загружать параллельно более 6 ресурсов с одного домена.

Кроме того, когда Rendering Engine отдаёт команду компоненту Networking Component на синхронную загрузку стиля или скрипта, он останавливает разбор документа.

С загрузкой стилей происходит подобный процесс преобразования из байтов в Object Model (CSSOM): байты -> символы -> токены -> узлы -> CSSOM.

Немного иначе происходит загрузка скрипта. Вместо того, чтобы вернуть управление Rendering Engine’у, Networking Component . передаёт управление JavaScript Interpreter, который преобразует байты в исполняемый код: байты -> символы -> токены -> Abstract Syntax Tree (evaluating). Далее в работу вступает компилятор, который оптимизирует AST, кэширует некоторые участки кода, компилирует его на лету (JIT compilation) в исполняемый код и исполняет (executing). Однако исполняется скрипт только, когда готова CSSOM. До тех пор скрипт стоит в очереди на исполнение.

Во многих современных браузерах во время исполнения JavaScript в отдельном потоке продолжается сканирование документа на наличие ссылок на другие ресурсы и постановка ресурсов в очередь на скачивание (Speculative parsing).

Каждый этап разбора HTML, CSS и JS можно увидеть в Chrome DevTools во вкладке Performance

Если при загрузке скрипта Rendering Engine видит у скрипта атрибут async, то он не останавливает разбор документа во время загрузки скрипта. Скрипт также станет в очередь на исполнение, дожидаясь, когда CSSOM будет готова.

Если при загрузке скрипта Rendering Engine видит у скрипта атрибут defer, то он не останавливает разбор документа во время загрузки скрипта, но когда скрипт загрузится, он станет в очередь на исполнение, которая заработает при возникновении события DOMContentLoaded. К этому моменту CSSOM будет уже готова.

Когда Rendering Engine заканчивает разбор документа, он вызывает событие DOMContentLoaded, и состояние документа меняется на interactive. При этом ресурсы (например, картинки) могут продолжать загружаться.

Когда все ресурсы загрузились, вызывается событие load, а состояние документа меняется на complete.

После того, как документ полностью разобран и сформированы DOM и CSSOM, Rendering Engine начинает построение Render Tree. В него попадут все элементы, которые нужно отрисовать. Некоторые элементы изначально могут быть невидимыми — их не нужно рисовать. Для каждого элемента, который “выпадает” из потока (например, используется position: absolute), будет создаваться отдельная ветка в Render Tree.

Во время Rendering Tree происходит сопоставление узлов из DOM и узлов CSSOM.

Свойства узла можно получить с помощью функции window.getComputedStyles(узел).

Когда Rendering Tree готов, Rendering Engine запускает процесс layout. Он заключается в вычислении размеров и позиций каждого элемента на странице.

Следующий этап — paint. Rendering Engine вычисляет цвет каждого пикселя.

И, наконец, последний этап — composite. Компонент UI Backend слой за слоем отрисовывает элементы на странице. При этом, если требуется отрисовать изображение, которое ещё не загрузилось, во время процесса layout, Rendering Engine зарезервирует место для изображения, если у него указаны ширина и высота. Rendering Engine вынесет на отдельный слой те элементы, стили которых содержат правила opacity, transform или will-change. Более того, эти слои Rendering Engine передаст для обработки GPU.

Если требуется отобразить текст, для которого используется нестандартный шрифт, то современные браузеры скроют текст до момента загрузки шрифта (flash of invisible text).

В современных браузерах скачивание документа, его разбор и отрисовка происходят по кускам, частями.

В документе HTML могут присутствовать некоторые мета-теги, которые могут менять порядок загрузки ресурсов, а также их приоритет.

К примеру, мета-тег dns-prefetch вынуждает Rendering Engine обратиться к Networking Component и получить IP нужного домена ещё до того, как Rendering Engine встретить его в документе.

Мета-тег prefetch вынудит Networking Component поставить указанный ресурс в очередь на загрузку с низким приоритетом.

Мета-тег preload вынудит Networking Component поставить указанный ресурс в очередь на загрузку с высоким приоритетом.

Мета-тег preconnect вынудит Networking Component заранее подключиться к другом хосту, то есть пройти нужные этапы: DNS lookup, redirects, hand shakes.

Читайте также: