Программа последовательность команд для компьютера электрических импульсов нулей и единиц

Обновлено: 06.07.2024

Процессор берёт команды программ и данные для обработки из памяти. Память является электронным устройством и состоит из микросхем, которые, в свою очередь, состоят из тысяч более мелких электронных компонентов. Подобные электронные компоненты могут находиться только в двух состояниях — «включено» или «выключено», что соответствует двум цифрам двоичной системы счисления 1 или 0 или одному биту.

Таким образом, любая информация в памяти компьютера представляется в виде последовательности битов, каждый из которых находится в одном из допустимых состояний.

При использовании одного бита можно представить в памяти компьютера только два различных символа. Одному из них будет сопоставлен двоичный код — ноль, а второму — единица.

Если мы увеличим длину кодовой комбинации символа до двух цифр, то получим следующие коды: 00, 01, 10, 11. Таким образом, в памяти компьютера можно будет представить четыре различных символа. При последовательном наращивании длины двоичной кодовой комбинации увеличивается количество символов, которые могут быть закодированы. Кодом длиной в три символа представляются 8 различных символов (000, 001, 010, 011, 100, 101, 110, 111) и т. д.

При длине кодовой комбинации L количество кодовых комбинаций K определяется по формуле:
K = 2 L ,

Текстовая информация состоит из букв, цифр, знаков препинания, специальных символов, таких, как пробел, символ перевода строки и др. Для кодирования текстовой информации в компьютере используются равномерные коды. В случае, когда код каждого символа занимает в памяти компьютера 1 байт, или 8 бит, общее количество символов, которые можно закодировать, равно 2 8 = 256. Если кодовое слово состоит из двух байтов, можно закодировать 2 16 = 65 536 символов.

Существуют стандартные таблицы кодов. Они могут использовать один или два байта для кодирования одного символа.

Широко используется таблица кодов, известная как стандарт ASCII (American Standart Code for Information Interchange — Американский стандартный код для обмена информацией), использующая один байт для кодирования одного символа. ASCII представляет собой кодировку для представления десятичных цифр, символов латинского и национального алфавитов, знаков препинания, символов арифметических операций и управляющих символов. Управляющие символы называют непечатаемыми символами, к ним относятся такие, как «перевод строки» (код символа 10), «возврат каретки» (код 13) и др.

Первая половина кодовой таблицы содержит стандартные символы ASCII (символы с кодами 0 — 127), они одинаковые во всех странах.

Коды в таблице записаны в шестнадцатеричной системе счисления, как принято в информатике. Код символа А, например, 4116 = 6510. Таблицу кодов не надо запоминать, но следует помнить последовательность символов:

  1. знаки препинания и арифметических операций;
  2. цифры от 0 до 9;
  3. прописные символы латинского алфавита;
  4. строчные символы латинского алфавита.

Вторая часть кодовой таблицы (символы с кодами 128 — 255) называют расширенными кодами ASCII. В расширенные коды ASCII включают символы национальных алфавитов, например символы кириллицы. Но даже с учётом этих дополнительных знаков алфавиты многих языков не удаётся охватить при помощи 256 знаков. По этой причине существуют различные варианты кодировки ASCII, включающие символы разных языков.

Отсутствие согласованных стандартов привело к появлению различных кодовых таблиц (вернее, различных вторых частей кодовых таблиц) для кодирования символов кириллицы, среди которых

  • международный стандарт ISO 8859;
  • кодовая таблица фирмы Microsoft CP-1251 (кодировка Windows);
  • кодовая таблица, применяемая в ОС Unix KOI8R и др.

По этой причине тексты на русском языке, набранные с использованием одной кодовой таблицы, невозможно прочитать при использовании другой кодовой таблицы.

В настоящее время в компьютерах широко применяется стандарт кодирования Unicode (Юникод), в котором для кодирования одного символа отводятся один байт, два байта или четыре байта. Первые 128 символов Юникода совпадают с символами ASCII. Остальная часть кодовой таблицы включает символы, используемые в основных языках мира.

Изображение на экране монитора формируется набором экранных точек —пикселей. Каждая экранная точка имеет свой цвет. Картинка на экране — это отображение информации из памяти компьютера.

Первые мониторы были монохромными. Точка на экране монохромного монитора может быть только светлой (белой) или тёмной (чёрной). Для кодирования цвета пикселя используется один бит памяти, значение 1 соответствует белому цвету, 0 — чёрному. Подобные экраны используются в недорогих сотовых телефонах, системах видеонаблюдения и других устройствах.

Каждый пиксель современного дисплея определяется компонентами трёх основных цветов: красного (Red, R), зелёного (Green, G) и синего (Blue, B). В памяти необходимо сохранять информацию о состоянии каждой точки изображения, т. е. о состоянии каждой из её трёх составляющих. Управление яркостью каждой составляющей позволяет влиять на цвет экранной точки.

Цветовой моделью называется правило представления цвета в виде наборов чисел (обычно трёх-четырёх). В компьютерной графике используется несколько видов цветовых моделей.

Рассмотрим цветовую модель, связанную с представлением пикселя составляющими красного, зелёного и синего цветов. Она называется RGB(Red-Green-Blue)-моделью.

В RGB-модели происходит сложение цветов и добавление их к чёрному цвету экрана, поэтому она называется аддитивной (additive). Разные цвета образуются смешиванием трёх основных цветов в разных пропорциях, т. е. с разными яркостями.

Глубина цвета (color depth) — это число бит, используемых для представления каждого пикселя изображения.

В модели RGB каждый цвет может кодироваться тремя байтами (режимTrueColor). Каждый байт отвечает за яркость красной, зеленой и синей составляющей пикселя соответственно. Таким образом, глубина цвета в режиме TrueColor составляет 24 бита. Изображения, пиксели которых закодированы таким способом, называются 24-битными изображениями.

Чтобы указать цвет пикселя в модели RGB, достаточно перечислить разделённые точками яркости каждой составляющей, например: 255.255.0 — код жёлтой точки, записанный при помощи десятичных кодов яркостей. Значения яркости варьируются от 0 («выключено») до 255 («включено на максимум»). Если значения яркостей всех трёх составляющих равны, получим оттенки серого цвета.

Если изменять интенсивность каждого цвета для смешанных цветов, например задать цвет 127.127.0, то мы получим на экране болотный цвет, а не более тёмный оттенок жёлтого цвета, как можно было ожидать. Это связано с тем, что человеческий глаз более чувствителен к зелёному цвету. Чем ниже интенсивности составляющих, тем темнее цвет на экране. И наоборот — чем выше интенсивности цветов, тем светлее оттенки.

Модель CMY использует также три основных цвета: голубой (Cyan), фуксин (Magenta, иногда его называют «пурпурный» или «малиновый») и жёлтый (Yellow). Эти цвета описывают отражённый от белой бумаги свет трёх основных цветов RGB-модели.

Модель CMY является субтрактивной (основанной на вычитании) цветовой моделью. Краситель, нанесённый на белую бумагу, вычитает часть спектра из падающего белого света. Например, на поверхность бумаги нанесли жёлтый (Yellow) краситель. Теперь синий свет, падающий на бумагу, полностью поглощается. Таким образом, жёлтый носитель вычитает синий свет из падающего белого.

При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трёх должен получиться чёрный цвет. Но при использовании реальных полиграфических красок получается не чёрный, а неопределённый тёмный цвет. Поэтому к трём основным цветам CMY-модели добавляют чёрный (Black) и получают новую цветовую модель CMYK.

Цветовая модель CMYK используется в основном в полиграфии при выводе изображения на печать.

Количество различных цветов K и количество битов для их кодирования (глубина цвета) L связаны формулой K = 2 L . При L = 24 бита можно закодировать 2 24 = 16 777 216 различных цветов.

Если известно разрешение экрана (количество точек по горизонтали и вертикали) и глубина цвета, можно определить объём видеопамяти для хранения одного кадра (одной страницы) изображения. Например, при разрешении экрана 640 × 480 и использовании 24 бит на точку объём видеопамяти равен 640 ∙ 480 ∙ 24 = 7 372 800 бит = 900 Кбайт.

Все компьютерные изображения делятся на два больших класса — растровые и векторные. Различие между ними определяет способ хранения изображений в памяти компьютера.

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем громче звук; чем больше частота сигнала (число колебаний в секунду), тем выше тон.

В настоящее время существует два основных способа записи звука —аналоговый (непрерывный) и цифровой (дискретный). Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка изменяет свою форму непрерывно. Компакт-диски являются примером цифрового хранения звуковой информации, так как звуковая дорожка компакт-диска содержит участки с различной отражающей способностью.

Для того чтобы записать звук на какой-нибудь носитель, его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Так звуковые волны преобразуются микрофоном в электрический ток переменного напряжения, который представляет собой аналоговый сигнал. Применительно к электрическому сигналу термин «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде (см. рис. 11а).

Для того чтобы компьютер мог обрабатывать звук, непрерывный сигнал должен быть превращён в последовательность электрических импульсов (двоичных нулей и единиц). В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени. Дискретизация — это преобразование непрерывных сигналов в набор дискретных значений, каждому из которых присваивается число — кодовое слово.

Для дискретизации надо несколько раз в секунду измерять величину аналогового сигнала и кодировать её, например, с помощью 256 значений.

Фактически плоскость, на которой изображён непрерывный сигнал, разбивается вертикальными и горизонтальными линиями (см. рис. 11б), и считается, что график проходит строго через узлы полученной сетки, непрерывная плавная линия заменяется ломаной.


Дискретизация по времени соответствует разбиению вертикальными линиями. Она характеризуется частотой дискретизации. Частота дискретизации звукового компакт-диска 44,1 кГц, DVD — примерно 96 кГц. Это значит, что величина аналогового сигнала измеряется 44 100 и 96 000 раз в секунду соответственно. Если кодируется стереозвук, отдельно кодируются два канала.

Горизонтальное разбиение также важно: чем меньше расстояние между горизонтальными линиями сетки, тем качественнее будет цифровой звук. Количество линий сетки определяет количество уровней звука, поэтому горизонтальное разбиение называется квантованием по уровню. Для кодирования полученных значений уровней используют двоичные числа. Количество используемых для кодирования бит называется глубиной звука. Если глубина звука 8 бит или 16 бит, можно закодировать соответственно 2 8 = 256 уровней или 2 16 = 65 536 уровней сигналов. Это значит, что интервал от нулевого до максимального напряжения аналогового сигнала разбивается на 256 или 65 536 уровней, что соответствует количеству высот звука (тонов).

Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого-цифрового преобразователя (АЦП), размещённого на звуковой плате.

С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Но, как видно из примера, звуковые файлы занимают очень много места в памяти. Поэтому используются методы сжатия звуковых файлов. Качество музыки после сжатия несколько ухудшается, но это практически незаметно, так как при разработке алгоритмов сжатия учитываются законы восприятия музыки человеком.

1. Что такое компьютер?
а) устройство для обработки аналоговых сигналов;
б) устройство для хранения информации любого вида.
в) многофункциональное электронное устройство для работы с информацией;+
г) электронное вычислительное устройство для обработки чисел;

2. От чего зависит производительность работы компьютера (быстрота выполнения операций)?
а) тактовый частоты процессора;
б) объема обрабатываемой информации.+
в) быстроты нажатия на клавиши;
г) размера экрана монитора;

3. Какое название имеет система взаимосвязанных технических устройств, которые выполняют ввод, хранение, обработку и вывод информации?
а) программное обеспечение;
б) компьютерное обеспечение;
в) аппаратное обеспечение.+
г) системное обеспечение;

4. Устройством визуального воспроизведения символьной и графической информации является:
а) процессор;
б) клавиатура.
в) сканер;
г) монитор;+

5. Устройство, не находящееся в системном блоке:
а) видеокарта;
б) процессор;
в) сканер;+
г) жёсткий диск;
д) сетевая карта;

6. Для чего нужен дисковод?
а) чтения/записи данных с внешнего носителя;+
б) хранения команд исполняемой программы.
в) долговременного хранения информации;
г) обработки команд исполняемой программы;

7. НЕ периферийное устройство:
а) жесткий диск;+
б) принтер;
в) сканер.
г) модем;
д) web-камера;

8. Название принтера с чернильной печатающей головкой, выбрасывающей под давлением чернила из ряда мельчайших отверстий на бумагу:
а) сублимационный;
б) матричный.
в) струйный;+
г) жёсткий;
д) лазерный;

9. Программа последовательностью:
а) команд для компьютера;+
б) электрических импульсов;
в) нулей и единиц;
г) текстовых знаков;

10. В каком месте нахождения информация будет утеряна при выключении компьютера?
а) на гибком диске;
б) на жестком диске;
в) на CD-ROM диске;
г) в оперативной памяти;+

11. Что применяется для долговременного хранения пользовательской информации?
а) внешняя память;+
б) процессор;
в) дисковод;
г) оперативная память;

12. В каком месте можно сохранить информацию перед отключением компьютера?
а) в оперативной памяти;
б) во внешней памяти;+
в) в регистрах процессора;
г) на дисководе;

13. Наименьшей адресуемой частью памяти компьютера является:
а) байт;
б) бит;+
в) файл;
г) машинное слово;

14. Для чего нужен магнитный диск? Для…
а) обработки информации;
б) хранения информации;+
в) ввода информации;
г) вывода информации;

15. Где хранится выполняемая в данный момент программа и обрабатываемые ею данные?
а) во внешней памяти;
б) в оперативной памяти;+
в) в процессоре;
г) на устройстве ввода;

16. Что такое программа?
а) обрабатываемая информация, представленная в памяти компьютера в специальной форме;
б) электронная схема, управляющая работой внешнего устройства;
в) описание последовательности действий, которые должен выполнить компьютер для решения поставленной задачи обработки данных;+
г) программное управляемое устройство для выполнения любых видов работы с информацией;+

17. Что такое сканер?
а) устройство хранения информации
б) устройство обработки информации
в) устройство вывода информации на бумагу
г) устройство ввода информации с бумаги+

18. Типом принтера с наихудшими качествами печати является:
а) струйный
б) матричный+
в) лазерный

19. Какая кнопка перемещает курсор в начало строки клавиша?
а) PgDown
б) End
в) PgUp
г) Home+

20. Какой устройство не является устройством вывода информации?
а) микрофон+
б) монитор
в) принтер
г) звуковые колонки

22. Что можно сделать щелчком мыши?
а) перемещать объект
б) открыть объект
в) указать объект+

23. Какой клавишей происходит завершение ввода команды?
а) Enter+
б) Пробел
в) Shift
г) Backspace

24. Что применяют для подключения компьютера к телефонной сети?
а) плоттер
б) принтер
в) факс
г) сканер
д) модем+

25. Для чего нужны постоянно запоминающие устройства? Для…
а) хранения программы пользователя во время работы
б) хранения постоянно используемых программ
в) хранения программ первоначальной загрузки компьютера и тестирования его узлов+
г) записи особо ценных прикладных программ
д) постоянного хранения особо ценных документов

26. От чего зависит скорость работы процессора?
а) объема обрабатываемой информации
б) организации интерфейса операционной системы
в) объема внешнего запоминающего устройства
г) тактовой частоты+
д) наличия или отсутствия подключенного принтера

27. Устройства, которые не являются устройствами ввода информации:
а) сканер
б) монитор+
в) мышь
г) клавиатура

28. Правильное определение компьютера:
а) устройство для обработки аналоговых сигналов
б) устройство для работы с текстами
в) многофункциональное электронное устройство для работы с информацией+
г) электронно-вычислительное устройство для обработки чисел
д) устройство для хранения информации любого вида

29. Что такое видеокарта?
а) устройство ввода информации
б) микросхема, осуществляющая вывод информации на экран+
в) устройство распознавания текстовой информации
г) устройство вывода информации

30. Что предназначено для долговременного хранения информации?
а) внешние носители+
б) процессор
в) блок питания
г) дисковод
д) оперативная память

31. Характеристика матричного принтера:
а) высокая скорость печати
б) высокое качество печати
в) наличие печатающей головки+
г) бесшумная работа

32. Для чего клавиша Shift?
а) печать заглавных символов+
б) ввод команды
в) переход в начало страницы
г) удаление символа

33. При отключении какого элемента ПК не будет функционировать?
а) оперативной памяти+
б) мыши
в) принтера
г) дисковода
д) сканера

34. Полный перечень основных элементов персонального компьютера:
а) центральный процессор, оперативная память, устройства ввода/вывода+
б) сканер, мышь, монитор, принтер
в) микропроцессор, сопроцессор, монитор
г) монитор, винчестер, принтер
д) АЛУ, УУ, сопроцессор

35. Что значит адресуемость оперативной памяти?
а) возможность хранения программ и данных
б) наличие номера у каждой ячейки оперативной памяти и возможность доступа к ней+
в) дискретность структурных единиц памяти
г) энергонезависимость оперативной памяти
д) энергозависимость оперативной памяти

36. Где будет храниться прикладная программа во время выполнения?
а) в видеопамяти
б) в оперативной памяти+
в) в процессоре
г) в ПЗУ
д) на жестком диске

37. Что происходит с информацией при отключении компьютера?
а) стирается на гибком диске
б) исчезает из постоянного запоминающего устройства
в) стирается на жестком диске
г) стирается на компакт-диске
д) исчезает из оперативной памяти+

38. Что такое микрофон?
а) устройство вывода звуковой информации
б) устройство ввода звуковой информации+
в) устройство обработки звуковой информации
г) устройство хранения звуковой информации

39. Магистрально-модульный принцип архитектуры современного персонального компьютера подразумевает такую логическую организацию аппаратных компонент компьютера, при которой:
а) каждое устройство связывается с другими напрямую, а также через одну центральную магистраль
б) все устройства связываются друг с другом через магистраль, включающую в себя шины данных, адреса и управления+
в) устройства связываются друг с другом в определенной фиксированной последовательности (кольцом)
г) каждое устройство связывается с другими напрямую
д) связь устройств друг с другом осуществляется через центральный процессор, к которому они все подключаются

40. Что такое акустические колонки?
а) устройство обработки звуковой информации
б) устройство ввода звуковой информации
в) устройство хранения звуковой информации
г) устройство вывода звуковой информации+

41. Устройства, входящие в состав процессора:
а) дисплейный процессор, видеоадаптер
б) сканер, ПЗУ
в) кэш-память, видеопамять
г) оперативное запоминающее устройство, принтер
д) арифметико-логическое устройство, устройство управления, регистры+

42. Какое из представленных устройств используют для ввода информации:
а) монитор
б) процессор
в) принтер
г) клавиатура+
д) ПЗУ

43. Кнопка включения дополнительной клавиатуры:
а) Power
б) ScrollLock
в) CapsLock
г) NumLock+

44. Название компакт-диска, предназначенного для многократной записи новой информации :
а) CD-ROM;
б) CD-RW;+
в) DVD-ROM;
г) CD-R;

45. Что такое клавиатура ?
а) устройство ввода манипуляторного типа
б) устройство ввода символьной информации+
в) устройство вывода информации
г) устройство хранения информации символьного типа

46. В каком виде должна быть представлена информация, чтобы она называлась данными?
а) в виде текста из учебника;
б) в числовом виде;+
в) в двоичном компьютерном коде;
г) в виде команд для компьютера.

Заречнева Ирина Владимировна,
Николаенко Наталья Александровна,
Кощеева Светлана Михайловна,
Брыксина Елена Николаевна

-->
« Ноябрь 2021 »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930
-->

Урок 10. Программная обработка данных на компьютере

учитель информатики МБОУ Червовская СОШ Николаенко Н.А.

Числовая, текстовая, графическая и звуковая информация может обрабатываться компьютером, если она представлена в двоичной знаковой системе. Информация в двоичном компьютерном коде, т.е. данные, представляет собой последовательность нулей и единиц. Данные обрабатываются компьютером в форме последовательностей электрических импульсов.

В таблице приведены примеры представления человеком и компьютером различных типов данных: числа 5, буквы «А», точки черного цвета и звука максимальной громкости.


Данные – это информация, которая обрабатывается компьютером в двоичном компьютерном коде.

Для того чтобы компьютер «знал», что ему делать с данными, как их обрабатывать, он должен получить определенную команду (инструкцию). Например: «сложить два числа»; «заменить один символ в тексте на другой.

Обычно решение задачи представляется в формеалгоритма, т.е. определенной последовательности команд. Такая последовательность команд (инструкций), записанная на «понятном» компьютеру языке, называетсяпрограммой

Программа – это последовательность команд, которую выполняет компьютер в процессе обработки данных.

Функциональная схема компьютера.

Центральным устройством компьютера, которое обрабатывает данные в соответствии с заданной программой, является процессор. Процессор обрабатывает данные в двоичном компьютерном коде в форме последовательностей электрических импульсов. Однако пользователь компьютера (человек) очень плохо понимает информацию, представленную в двоичном коде, и вообще не воспринимает ее в виде последовательностей электрических импульсов. Следовательно, в состав компьютера должны входитьустройства ввода и вывода информации. Устройства ввода «переводят» информацию с языка человека на язык компьютера. Устройства вывода, наоборот, «переводят» информацию с двоичного языка компьютера в формы, доступные для человеческого восприятия.

Для того чтобы компьютер мог выполнить обработку данных по программе, программа и данные должны быть загружены в оперативную память. Процессор последовательно считывает команды программы, а также необходимые данные из оперативной памяти, выполняет команды, а затем записывает полученные данные обратно в оперативную память. В процессе выполнения программы процессор может запрашивать данные с устройства ввода и пересылать данные на устройства вывода. Однако при выключении компьютера все данные и программы в оперативной памяти стираются. Для долговременного хранения большого количества различных программ и данных используется долговременная память. Пользователь может запустить программу, хранящуюся в долговременной памяти, она загрузиться в оперативную память и начнет выполняться. Необходимые для выполнения этой программы данные, хранящиеся в долговременной памяти, будут также загружены в оперативную память. В процессе программной обработки данных на компьютере пересылка данных и программ между отдельными устройствами компьютера осуществляется по магистрали.


Закрепление изученного материла

1. Информация, обрабатываемая компьютером в виде двоичного компьютерного кода.

2. Алгоритм,записаный на языке программирования и выполняемый компьютером.

3. Центральное устройство компьютера, которое обрабатывает данные в соответствии с заданной программой

4. Какое устройство служит каналом пересылки данных и программ?

5. В состав компьютера должны входить устройства ввода и … информации


Домашнее задание

п.2.1. Практическая работа 2.2 "Форматирование внешнего накопителя". Описание работы смотрите в учебнике

Тесты по информатике 7 класс. Тема: "Устройство компьютера"

Правильный вариант ответа отмечен знаком +

1. Выберите определение компьютера.

+ 1) Электронное программное управляемое устройство для обработки информации

2) Вычислительный прибор

3) Устройство для работы с различными сигналами

4) Прибор для обработки текстов

2. Computer в переводе с английского:

3. Первый компьютер был создан:

1) в 1942 году в СССР

2) в 1945 году в СССР

+3) в 1945 году в США

4) в 1942 году в США

4. На рисунке мы видим:

вопрос теста Представление данных в двоичном коде

1) представление информации с помощью троичного кода

+2) представление данных в двоичном коде

4) совокупность битов

5. Обрабатываемая информация, сохраняемая в памяти компьютера в виде двоичного кода – это:

1) прикладные программы

2) файлы и папки

4) внутренняя и внешняя память

6. Информация в компьютере представляется в виде:

1) набора букв и знаков

+ 3) двоичного кода

4) списка команд

7. Программа – это:

+1) алгоритм, выполняемый компьютером для решения задачи

2) последовательность электрических импульсов

3) перечень организованных в определенном порядке нулей и единиц

4) алгоритм запуска компьютера

8. Выберите основные характеристики процессора:

1) Частота импульсов и объем памяти

2) Объем памяти и разрядность

3) Возможность перезаписи и адресуемость

+4) Разрядность и тактовая частота

9. Под тактовой частотой процессора подразумевают:

1) минимальную скорость передачи информации

+2) число вырабатываемых за одну секунду импульсов

3) максимальное количество операций, доступных процессору

4) число обращений процессора к ОЗУ

тест 10. Скорость работы процессора напрямую зависит от:

1) доступного объема памяти

2) интерфейса ОС

+3) тактовой частоты

4) подключенных периферийных устройств

11. Максимальная длинна двоичного кода, который одновременно может обрабатываться и передаваться это:

1) тактовая частота

12. Отметься устройство, предназначенное для обработки данных?

3) системный блок

13. Где находятся сведения о выполняемой программе и ее данных?

+ 2) В оперативной памяти

3) В системном блоке

4) На устройстве ввода/ввода

14. ПЗУ предназначено для:

+ 1) сохранения информации, необходимой для загрузки компьютера при запуске

2) хранения программы

3) записи программ

4) хранения документов

15. Энергозависимость, быстрый доступ, объем в несколько сотен или тысяч мегабайт – это характеристики:

+3) оперативной памяти

4) центрального процессора

16. Долговременное хранение файлов, более медленный доступ, объем в несколько десятков или сотен гигабайт – это характеристики:

1) операционной системы

+2) внешней памяти

17. На рисунке изображено устройство:

вопрос теста Устройство хранения информации

+3) хранения информации

4) обработки и передачи данных

18. На рисунке изображено устройство

вопрос теста Устройство вывода

3) обработки текста и чисел

4) хранения и передачи данных

19. На рисунке изображена:

вопрос теста Схема информационных потоков в компьютере

+1) схема информационных потоков в компьютере

2) схема хранения данных

3) архитектура фон Неймана

4) графическая схема устройства компьютера

тест-20. Укажите максимально полный список основных элементов компьютера:

Большую часть информации человек получает с помощью зрения и слуха. Важность этих органов чувств обусловлена развитием человека как биологического вида, поэтому человеческий мозг с большой скоростью способен обрабатывать огромное количество графической и звуковой информации.

С появлением компьютеров возникла огромная потребность научить их обрабатывать такую информацию. Как же такую информацию может обработать компьютер?

Итак, кодирование графической информации осуществляется двумя различными способами: векторным и растровым


Программы, работающие с векторной графикой, хранят информацию об объектах, составляющих изображение в виде графических примитивов: прямых линий, дуг окружностей, прямоугольников, закрасок и т.д.

Достоинства векторной графики:

— Преобразования без искажений.

— Маленький графический файл.

— Рисовать быстро и просто.

— Независимое редактирование частей рисунка.

— Высокая точность прорисовки.

— Редактор быстро выполняет операции.

Недостатки векторной графики:

— Векторные изображения выглядят искусственно.

— Ограниченность в живописных средствах.

Программы растровой графики работают с точками экрана (пикселями). Это называется пространственной дискретизацией.

КОДИРОВАНИЕ РАСТРОВОЙ ГРАФИКИ

Давайте более подробно рассмотрим растровое кодирование информации.

Компьютер запоминает цвет каждой точки, а пользователь из таких точек собирает рисунок.

При этом зная количество пикселей по вертикале и горизонтали, мы сможем найти — разрешающую способность изображения.

Разрешающая способность находится по формуле:

где n, m — количество пикселей в изображении по вертикали и горизонтали.

В процессе дискретизации каждый пиксель может принимать различные цвета из палитры цветов. При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета.

где N — количество цветов в палитре;

i — глубина цвета.

Таким образом, чтобы найти вес изображения достаточно перемножить разрешающую способность изображения на глубину цвета: L=P*i.

Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры.

КОДИРОВОЧНАЯ ПАЛИТРА RGB

Когда художник рисует картину, цвета он выбирает по своему вкусу. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет.

В экспериментах по производству цветных стекол М. В. Ломоносов показал, что получить любой цвет возможно, используя три различных цвета.

Этот факт был обобщен Германом Грассманом в виде законов аддитивного синтеза цвета.


Давайте рассмотрим два из этих законов:

— Закон трехмерности. С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет.

— Закон непрерывности. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно.

Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны.


Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше.

Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB (Red, Green, Blue). То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит (режим True-Color). Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления (от 0 до FF).

Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб.

При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.

Поскольку именно модель RGB соответствовала основному механизму формирования цветного изображения на экране, большинство графических файлов хранят изображение именно в этой кодировке. Если же используется другая модель, например в JPEG , то приходится при выводе информации на экран преобразовывать данные.

КОДИРОВАНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ

Давайте перейдем к кодированию звуковой информации.

Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой.


Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. е. превращен в последовательность электрических импульсов (двоичных нулей и единиц).

Для этого звуковая волна разбивается на отдельные временные участки.

Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание. Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц.

При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования.

Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука. При этом, рассматривая современное звучание, количество звуковых волн может быть различное, например, для стереозвука — это 2, а для квадрозвука — 4.

Читайте также: