Другое название интерфейса ieee 1394 тип ответа одиночный выбор digital link bluetooth irda rs232

Обновлено: 06.07.2024

Протокол FireWire (также известный как i.Link или IEEE 1394) предназначен для персональных компьютеров в качестве быстродействующего последовательного интерфейса, возможно применение и для задач реального времени. Стандарт был утвержден в 1995 году. Стандарт IEEE 1394-1995 для скоростной последовательной шины определяет протокол последовательной передачи данных. Возможности стандарта 1394 достаточны для поддержки широкого круга цифровых аудио/видео приложений, таких как маршрутизация сигналов, домашние сети, управление аудио/видео устройствами, нелинейное DV редактирование и 32-канальное (или более) цифровое аудио-микширование.

Особенности IEEE - 1394

  • Скорости передачи 100 - 200 - 400 - 800 Мбит/с
  • Оперативные подключения/отключения без потери данных или прерывания работоспособности.
  • Свободная топология сети, допускающая как древовидную, так и петлевую (daisy-chains) схемы.
  • Возможность установки гарантированной полосы пропускания для приложений реального времени
  • Стандартные разъемы для различных устройств и приложений.

FireWire допускает подключение до 63 периферийных устройств. Стандарт допускает коммуникации между устройствами в режиме P2P, например, соединение сканера и принтера без использования ресурсов памяти или ЦПУ компьютера. FireWire поддерживает также подключение нескольких машин к шине, а с помощью программного обеспечения возможно формирование IP-сетей между машинами, соединенными через FireWire. Для реализации протокола используется 6-проводный кабель, что более удобно, чем в случае SCSI, и может также обеспечить до 45 ватт питания на порт. Это позволяет в случае применения устройств с малым потреблением обойтись без отдельных сетевых кабелей.

FireWire 400 может передавать данные между устройствами со скоростью 100, 200 или 400 Мбит/с (в действительности это 98.304, 196.608 или 393.216 Мбит/с, и называется S100, S200 и S400). Длина кабеля ограничивается 4.5 метрами, но в случае использования петлевой, ромашка-подобной схемы с 16-ю кабелями, суммарная длина соединений может достигать 72 метров. Стандарт FireWire 800 был введен в 2003, и позволяет поднять пропускную способность до 786.432 Мбит/с при сохранении совместимости для работы при более низких скоростях.

Архитектура IEEE-1394

Стандарт IEEE 1394-1995 определяет две категории шины: backplane и кабель. Шина backplane служит для обеспечения параллельной передачи данных, которая является альтернативой последовательной передачи данных между устройствами, подключенными к backplane. Кабельная шина представляет собой древовидную сеть, состоящую из шинных бриджей и узлов (кабельные устройства). 6-битовый идентификатор имени узла позволяет иметь до 63 узлов, подключенных к одной шинному бриджу; 10 битовый шинный идентификатор позволяет иметь до 1,023 бриджей в системе. Это означает, например, что до 63 устройства может быть подключено к одной карте адаптера 1394 в PC.

Каждый узел обычно имеет три разъема, хотя стандарт предусматривает от 1 до 27 разъемов на одно устройство уровня PHY. До 16 узлов может быть подключено к сети при схеме типа ромашки с помощью кабелей длиной 4.5 м. При этом суммарная длина кабелей оказывается равной 72 м. Шина 1394 может рассматриваться как plug-and-play шина.

Стандарт для кабеля 1394 определяет три базовые скорости передачи: 98.304, 196.608 и 393.216 Мбит/с. Пользователь DV устройства использует скорость S100, но большинство адаптеров 1394 PC поддерживают скорость S200. Скорость работы всей шины обычно является самой медленной; однако, если мастер шины (контроллер) использует Topology_Map и Speed_Map для специфицированной пары узлов, шина может поддерживать кратные (более высокие) скорости обмена для данной пары устройств.

Возможен изохронный и асинхронный обмен данными. Изохронный режим передачи шины 1394 обеспечивает гарантированную полосу и необходимую задержку при высокоскоростной передаче через несколько каналов. При сбросе шины или при включении изохронного режима узла, узел запрашивает полосу. Если нужная полоса недоступна, запрашивающее устройство периодически повторяет запросы.

IEEE 1394 является платформа независимым стандартом. Его характеристики превосходят известные I/O интерфейсы. IEEE 1394 может предоставить интерфейс с верхним слоем нового параллельного стандарта для порта, IEEE 1284. Хотя скорости передачи IEEE 1284 4 - 32 Мбит/с ниже по быстродействию, чем 1394, 1284 находит применение при работе с принтерами, так как нужна обратная совместимость с существующим параллельным интерфейсом Centronics. Устройства IEEE 1394 с различными скоростями передачи могут соединяться друг с другом, обеспечивая обратную совместимость с устройствами меньшего быстродействия.

Стандартные соединения шины осуществляются через 6-проводный кабель, содержащий две отдельные экранированные скрученные пары для передачи данных, два провода для подвода питания, и общий экран. Скрученные пары используются для передачи и приема данных. Силовые провода служат для подачи напряжения (8 - 40) В, при токе до 1.5 А. Для гальванической изоляции применяются трансформаторы, которые могут работать при разности потенциалов до 500 В, или конденсаторы, обеспечивающие изоляцию при напряжениях до 60В относительно земли.

В 2004 году был утвержден стандарт IEEE 1394.1, который позволяет расширить число подключаемых устройств до 64449.

В 2005 году принята версия стандарта IEEE 1394c, которая позволяет использовать кабель категории 5е (Ethernet). При этом появилась возможность использовать параллельно IEEE 1394c и GigaEthernet на одном кабеле. Максимальная заявленная длина сегмента — 100 м, Максимальная скорость соответствует S800 — 800 Мбит/с.

Стандарт FireWire (IEEE 1394)

Стандарт под техническим названием IEEE 1394 был официально представлен в 1995 году. Но его разработка была начала еще в конце 80-х годов прошлого века. Начала ее небезызвестная Apple. Тогда она планировала выпустить альтернативу интерфейсу SCSI. Причем альтернативу, ориентированную на работу с аудио и видео устройствами. Со временем разработка была передана институту IEEE.


Логотип FireWire

У IEEE 1394 есть несколько имен. FireWire — это коммерческое именование самой Apple. Сегодня оно встречается чаще всего на пару с техническим названием. Со временем японская Sony, часто идущая своим путем, стала именовать этот стандарт i.LINK. Не осталась в долгу и Panasonic, предложив свое имя: DV.

Несмотря на то, что FireWire изначально был ориентирован на аудио/видео оборудование (даже был принят в качестве A/V-стандарта организацией со смешной для нашего языка аббревиатурой HANA - High Definition Audio-Video Network Alliance) со временем с его поддержкой появились устройства хранения данных вроде внешних жестких дисков и оптических приводов.

Так же как и USB FireWire поддерживает систему Plug-and-Play и hot swap (возможность подключать устройства без выключения компьютера). В отличие от USB устройствам FireWire не присваивается уникальный идентификатор при подсоединении к системе. В каждом из них зашит свой уникальный идентификатор, соответствующий стандарту IEEE EUI-64. Последний является расширением для MAC-адресов, широко применяемых среди сетевых устройств.

Хаб FireWire


Хаб FireWire

Топология шины FireWire также дерево. При необходимости увеличить число портов можно подключать специальные FireWire-хабы. О глубине "вложенности" мы данных не нашли, поэтому предположим, что она может быть достаточно большой. Но максимальное число подключенных устройств (надо полагать на один FireWire-контроллер) составляет 63.

И немного о принятых стандартах и версиях шины FireWire. Всего мы их насчитали пять штук.

FireWire 400 (IEEE 1394-1995). Самая первая версия стандарта, принятая в 1995 году. Поддерживает скорость передачи данных 100 (подстандарт S100), 200 (S200) и 400 (S400) Мбит/с. Длина кабеля может составлять 4.5 метра. Тем не менее, в отличие от USB, FireWire работает по принципу репитеров. Репитеры (по сути усилители сигнала) могут быть независимыми, увеличивая общую длину кабеля, либо встроенными в хабы и устройства с поддержкой FireWire. Таким образом общая длина провода для стандарта S400 может составлять до 72 метров.

Коннектор FireWire


Коннектор FireWire

Основной тип коннектора FireWire выполнен в виде шестиугольника и имеет шесть контактов. По своим физическим размерам он несколько толще разъема USB. Зато через него может проходить значительно больше энергии. Так напряжение может составлять от 24 до 30 В, а сила тока — 1.5 А.

IEEE 1394a-2000. Данный стандарт был принят в 2000 году. Он внес некоторые дополнения в оригинальную спецификацию FireWire. В частности добавилась поддержка асинхронной передачи данных, более быстрое распознание подключенных устройств, объединение пакетов и энергосберегающий "спящий" режим. Кроме того был "узаконена" маленький вариант коннектора.

Четырехконтактный коннектор FireWire (i.LINK)

Четырехконтактный коннектор FireWire (i.LINK)

Уменьшенная версия разъема работает только с четырьмя контактами, но питания она может передавать значительно меньше. Сегодня именно этот тип наиболее распространен и он же чаще всего встречается в ноутбуках (лишь Apple продолжает устанавливать шестиконтактные разъемы). Соединить маленький разъем и большой коннектор (или наоборот) можно через специальный кабель-переходник.

FireWire 800 (IEEE 1394b-2002). В 2002 году было принято еще одно дополнение к стандарту FireWire. Оно получило название IEEE 1394b (а первая версия стала именоваться IEEE 1394a) или FireWire 800. Цифра "800" прямо указывает на максимальную скорость передачи данных — 800 Мбит/с.

Коннектор FireWire 800


Коннектор FireWire 800

Вдвое более высокая скорость потребовала разъем другого типа. Теперь в нем уже используется 9 контактов. При этом была сохранена обратная совместимость с FireWire 400 через кабель-переходник. Конечно, подключая старые устройства к новому порту или наоборот скорость упадет.

Заметим, что 800 Мбит/с для IEEE 1394b не предел. В тестовом режиме поддерживается передача на скорости до 3200 Мбит/с, но эта возможность будет раскрыта несколько позже. Также стало возможным использовать два типа кабеля: обычный и оптический. В первом случае максимальная длина составит 5 метров, а во втором — до 100 метров. Электрические характеристики обновленного стандарта не изменились.

FireWire 800 сегодня чаще всего можно встретить в рабочих станциях и компьютерах Apple. На обычные материнские платы пока если и устанавливается, то FireWire 400. Да и пока на рынке сравнительно мало устройств с поддержкой более быстрой спецификации FireWire. Как правило это внешние жесткие диски, объединенные в RAID-массив. Да и то, они чаще всего поддерживают передачу по 3-4 интерфейсам (USB 2.0, FireWire 400/800, eSATA).

FireWire S800T (IEEE 1394c-2006). Главное нововведение этого стандарта — поддержка возможности использования витой пары категории 5e, на конце которой разведены обычные коннекторы RJ-45. Первое нововведение потребовало и второго — автоматического определение подключенного кабеля. Кроме этого были внесены незначительные изменения и исправления в IEEE 1394b.

FireWire S3200. Ну и о будущем. Объявление о планах выпустить USB 3.0 не могло не отразиться на FireWire. Итог — в декабре было объявлено о намерениях представить спецификацию стандарта, способного передавать на скорости до 3.2 Гбит/с. И в данном случае сделать это, вероятно, будет проще чем с USB. Ведь современный FireWire 800 уже может передавать на такой скорости данные. Остается лишь отладить технологию и хорошо ее протестировать, а не серьезно дорабатывать.

На этом создатели FireWire останавливаться не собираются. Следующий на очереди стандарт со скоростью передачи до 6.4 Гбит/с. Правда, если S3200 может появится в течение года-двух, то второй пока неизвестно когда увидит свет. Но надо полагать, затягивать с ним не станут.

В конце рассказа о FireWire попробуем разобраться почему при всей его прелести он №2 после USB. Первый аргумент против — более низкая скорость (если сравнить наиболее распространенный FireWire 400 и USB 2.0). Тем не меняя, речь идет о теоретической максимальной пропускной способности. Она достижима, но лишь при определенных условиях, довольно редко выполняемых в реальности.

Мы не стали сами тестировать скорость (все же это не статья "Что выбрать: USB или FireWire?"), но нашли в Интернете довольно много отзывов и заметок по этой теме. Так вот, в реальных ситуациях FireWire оказывается практически всегда быстрее. Разница порой может составлять довольно много — до 30-70%. Отмечается, что скорость USB 2.0 редко превышает 35 Мбайт/с (при теоретическом пике 60 Мбайт/с), тогда как FireWire спокойно передает данные со скоростью до 49 Мбайт/с.

И возможности обеспечения питанием у IEEE 1394 куда лучше. При использовании полноразмерного шестиконтактного разъема подключение внешнего источника питания требуется куда реже, чем в случае USB. Да и устройства заряжались бы значительно быстрее.

Так почему же в каждом компьютере установлено по 4-10 портов USB и хорошо если один FireWire, а не наоборот? Потому же почему на 90% ПК проинсталлирована Windows, а на Mac OS только на 5%. В свое время Apple отказалась начать лицензирование своей операционной системы производителям компьютеров и в итоге Microsoft теперь первая.

На FireWire не было наложено столь категорических ограничений (таких, что их можно устанавливать на "яблочные" системы), но Apple, как владелец патента на технологию, вполне законно хочет получать отчисления. Для производителей компьютеров установлена такса $0.25, а для производителей оборудования (камер, внешних HDD и т.д.) - $1-2.

USB изначально открытый стандарт, ориентированный на широкую аудиоторию. То есть он банально обходится дешевле, поэтому его все и предпочли, даже сама Apple совсем не брезгует им (достаточно вспомнить MacBook Air, оснащенный только одним USB и обделенный традиционным FireWire, а также перевод iPod с FireWire на USB).

Мы же посоветуем при возможности все же использовать FireWire, особенно если требуется передавать большие объемы данных. Например, при подключении внешнего жесткого диска. Впрочем, для последнего типа устройств уже есть собственный стандарт — eSATA.

IEEE 1394 или Firewire — это последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Благодаря невысокой цене и большой скорости передачи данных эта шина становится новым стандартом шины ввода-вывода для персонального компьютера. Ее изменяемая архитектура и одноранговая топология делают Firewire идеальным вариантом для подключения жестких дисков и устройств обработки аудио- и видеоинформации. Эта шина также идеально подходит для работы мультимедийных приложений в реальном времени. В этом материале приведены некоторые общие сведения о стандарте IEEE 1394.

Зачем нужен новый интерфейс

Прежде всего, посмотрите на заднюю стенку своего компьютера. Там можно найти множество всяких разъемов: последовательный порт для модема, принтерный порт для принтера, разъемы для клавиатуры, мыши и монитора, SCSI-интерфейс, предназначенный для подключения внешних носителей информации и сканеров, разъемы для подключения аудио и MIDI устройств, а также для устройств захвата и работы с видеоизображениями. Это изобилие сбивает с толка пользователей и создает беспорядок из соединительных кабелей. Причем, нередко производители ноутбуков используют и другие типы коннекторов.

Новый интерфейс призван избавить пользователей от этой мешанины и к тому же имеет полностью цифровой интерфейс. Таким образом, данные с компакт-дисков и цифровых магнитофонов смогут передаваться без искажений, потому что в настоящее время эти данные сначала конвертируются в аналоговый сигнал, а затем обратно оцифровываются устройством-получателем сигнала. Кабельное телевидение, радиовещание и видео CD передают данные также в цифровом формате.

Цифровые устройства генерируют большие объемы данных, необходимые для передачи качественной мультимедиа-информации. Например:

Высококачественное видео
Цифровые данные = (30 frames / second) (640 x 480 pels) (24-bit color / pel) = 221 Mbps

Видео среднего качества
Цифровые данные = (15 frames / second) (320 x 240 pels) (16-bit color / pel) = 18 Mbps

Высококачественное аудио
Цифровые данные = (44,100 audio samples / sec) (16-bit audio samples) (2 audio channels for stereo) = 1.4 Mbps

Обозначение Mbps — мегабит в секунду.

Для решения всех этих проблем и высокоскоростной передачи данных была разработана шина IEEE 1394 (Firewire).

IEEE 1394 — высокоскоростная последовательная шина

Стандарт поддерживает пропускную способность шины на уровнях 100, 200 и 400 Мбит/с. В зависимости от возможностей подключенных устройств одна пара устройств может обмениваться сигналами на скорости 100 Мбит/с, в то время как другая на той же шине — на скорости 400 Мбит/с. В начале следующего года будут реализованы две новые скорости — 800 и 1600 Мбит/с, которые в настоящее время предлагаются как расширение стандарта. Такие высокие показатели пропускной способности последовательной шины практически исключают необходимость использования параллельных шин, основной задачей которых станет передача потоков данных, например несжатых видеосигналов, внутри компьютера.

Таким образом, Firewire удовлетворяет всем вышеперечисленным требованиям, включая:

  • Цифровой интерфейс — позволяет передавать данные между цифровыми устройствами без потерь информации
  • Небольшой размер — тонкий кабель заменяет груду громоздких проводов
  • Простота в использовании — отсутствие терминаторов, идентификаторов устройств или предварительной установки
  • Горячее подключение — возможность переконфигурировать шину без выключения компьютера
  • Небольшая стоимость для конечных пользователей
  • Различная скорость передачи данных — 100, 200 и 400 Мбит/с
  • Гибкая топология — равноправие устройств, допускающее различные конфигурации
  • Высокая скорость — возможность обработки мультимедиа-сигнала в реальном времени
  • Открытая архитектура — отсутствие необходимости использования специального программного обеспечения

Благодаря этому шина IEEE 1394 может использоваться с:

  • Компьютерами
  • Аудио и видео мультимедийными устройствами
  • Принтерами и сканерами
  • Жесткими дисками, массивами RAID
  • Цифровыми видеокамерами и видеомагнитофонами

Простейшая система для видеоконференций, построенная на шине IEEE 1394, использующая два 15 fps аудио/видео канала загрузит всего третью часть 100Mbps интерфейса 1394. Но, в принципе, для этой задачи возможно и использование 400Mbps интерфейса.

Кабель IEEE 1394

Шесть контактов FireWire подсоединены к двум проводам, идущим к источнику питания, и двум витым парам сигнальных проводов. Каждая витая пара и весь кабель в целом экранированы.

Провода питания рассчитаны на ток до 1,5 А при напряжении от 8 до 40 В, поддерживают работу всей шины, даже когда некоторые устройства выключены. Они также делают ненужными кабели питания во многих устройствах. Не так давно инженеры Sony разработали еще более тонкий четырехпроводный кабель, в котором отсутствуют провода питания. (Они намерены добавить свою разработку к стандарту.) Этот так называемый AV-разъем будет связывать небольшие устройства, как «листья» с «ветками» 1394.

Гнездо разъема имеет небольшие размеры. Ширина его составляет 1/10 ширины гнезда разъема SCSI, у него всего шесть контактов (у SCSI — 25 или 50 разъемов).

К тому же кабель 1394 тонкий — приблизительно в три раза тоньше, чем кабель SCSI. Секрет тут прост — ведь это последовательная шина. Все данные посылаются последовательно, а не параллельно по разным проводам, как это делает шина SCSI.

Топология

Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет «корневое» устройство, от которого происходит ветвление к логическим «узлам», находящимся в других физических устройствах.

IEEE 1394

Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.

Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе — 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х1024 4 байт) для каждого узла.

Конструкция шины удивительно проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 — 3 порта). Шина допускает «горячее» подключение - соединение или разъединение при включенном питании. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса. Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом.

Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м.

Протокол

Интерфейс позволяет осуществлять два типа передачи данных: синхронный и асинхронный. При асинхронном методе получатель подтверждает получение данных, а синхронная передача гарантирует доставку данных в необходимом объеме, что особенно важно для мультимедийных приложений.

Протокол IEEE 1394 реализует три нижних уровня эталонной модели Международной организации по стандартизации OSI: физический, канальный и сетевой. Кроме того, существует «менеджер шины», которому доступны все три уровня. На физическом уровне обеспечивается электрическое и механическое соединение с коннектором, на других уровнях — соединение с прикладной программой.

На физическом уровне осуществляется передача и получение данных, выполняются арбитражные функции — для того чтобы все устройства, подключенные к шине Firewire, имели равные права доступа.

На канальном уровне обеспечивается надежная передача данных через физический канал, осуществляется обслуживание двух типов доставки пакетов — синхронного и асинхронного.

На сетевом уровне поддерживается асинхронный протокол записи, чтения и блокировки команд, обеспечивая передачу данных от отправителя к получателю и чтение полученных данных. Блокировка объединяет функции команд записи/чтения и производит маршрутизацию данных между отправителем и получателем в обоих направлениях.

«Менеджер шины» обеспечивает общее управление ее конфигурацией, выполняя следующие действия: оптимизацию арбитражной синхронизации, управление потреблением электрической энергии устройствами, подключенными к шине, назначение ведущего устройства в цикле, присвоение идентификатора синхронного канала и уведомление об ошибках.

Чтобы передать данные, устройство сначала запрашивает контроль над физическим уровнем. При асинхронной передаче в пакете, кроме данных, содержатся адреса отправителя и получателя. Если получатель принимает пакет, то подтверждение возвращается отправителю. Для улучшения производительности отправитель может осуществлять до 64 транзакций, не дожидаясь обработки. Если возвращено отрицательное подтверждение, то происходит повторная передача пакета.

В случае синхронной передачи отправитель просит предоставить синхронный канал, имеющий полосу частот, соответствующую его потребностям. Идентификатор синхронного канала передается вместе с данными пакета. Получатель проверяет идентификатор канала и принимает только те данные, которые имеют определенный идентификатор. Количество каналов и полоса частот для каждого зависят от приложения пользователя. Может быть организовано до 64 синхронных каналов.

Шина конфигурируется таким образом, чтобы передача кадра начиналась во время интервала синхронизации. В начале кадра располагается индикатор начала и далее последовательно во времени следуют синхронные каналы 1, 2… На рисунке изображен кадр с двумя синхронными каналами и одним асинхронным.

Оставшееся время в кадре используется для асинхронной передачи. В случае установления для каждого синхронного канала окна в кадре шина гарантирует необходимую для передачи полосу частот и успешную доставку данных.

Резюме

Таким образом, в скором будущем, на задней панели компьютера можно будет увидеть выходы всего двух последовательных шин: USB для низкоскоростных применений и Firewire — для высокоскоростных. Причем путь в жизнь у шины IEEE 1394 произойдет гораздо быстрее, чем у USB. В этом случае производители программных продуктов и аппаратуры действуют сообща. Уже сейчас доступны различные виды устройств с шиной Firewire, поддержка этой шины будет встроена в операционную систему Windows 98 и в ближайшем будущем ведущие производители чипсетов для PC встроят поддержку этой шины в свои продукты. Так что 1998 год станет годом Firewire.

Группой компаний при активном участии Apple была разработана технология последовательной высокоскоростной шины, предназначенной для обмена цифровой информацией между компьютером и другими электронными устройствами. В 1995 году эта технология была стандартизована IEEE (стандарт IEEE 1394 -1995). Компания Apple продвигает этот стандарт под торговой маркой FireWire , а компания Sony - под торговой маркой i-Link.

Интерфейс IEEE 1394 представляет собой дуплексную, последовательную, общую шину для периферийных устройств. Она предназначена для подключения компьютеров к таким бытовым электронным приборам, как записывающая и воспроизводящая видео- и аудиоаппаратура, а также используется в качестве интерфейса дисковых накопителей (таким образом, она соперничает с шиной SCSI ).

Первоначальный стандарт (1394a) поддерживает скорости передачи данных 100 Мбит/с, 200 Мбит/с и 400 Мбит/с. Последующие усовершенствования стандарта (1394b) обеспечивают поддержку скорости передачи данных 800 и 1600 Мбит/с ( FireWire -800, FireWire -1600).

Устройства, которые передают данные на разных скоростях, могут быть одновременно подключены к кабелю (поскольку пары обменивающихся данными устройств используют для этого одну и ту же скорость). Рекомендуемая максимальная длина кабеля между устройствами составляет 4,5 м. К кабелю общей длиной до 72 м может быть одновременно подключено до 63 устройств, называемых узлами (nodes). Для увеличения числа шин вплоть до максимального значения (1023) могут быть использованы мосты.

Каждое устройство обладает 64-разрядным адресом:

  • 6 бит - идентификационный номер устройства на шине,
  • 10 бит - идентификационный номер шины,
  • 48 бит - используются для адресации памяти (каждое устройство может адресовать до 256 Тбайт памяти).

Шина предполагает наличие корневого узла, выполняющего некоторые функции управления. Корневой узел может быть выбран автоматически во время инициализации шины, либо его атрибут может быть принудительно присвоен конкретному узлу (скорее всего, ПК). Некорневые узлы являются или ветвями (если они поддерживают более чем одно активное соединение), или листьями (если они поддерживают только одно активное соединение).

Как правило, устройства имеют по 1-3 порта, причем одно устройство может быть включено в любое другое (с учетом ограничений на то, что между любыми двумя устройствами может быть не более 16 пролетов и они не могут быть соединены петлей). Допускается подключение в "горячем" режиме, поэтому устройства могут подключаться и отключаться в любой момент. При подключении устройств адреса назначаются автоматически, поэтому присваивать их вручную не придется.

IEEE 1394 поддерживает два режима передачи данных (каждый из которых использует пакеты переменной длины).

  • Асинхронная передача используется для пересылки данных по конкретному адресу с подтверждением приема и обнаружением ошибок. Трафик, который не требует очень высоких скоростей передачи данных и не чувствителен ко времени доставки, вполне подходит для данного режима (например, для передачи некоторой управляющей информации).
  • Изохронная передача предполагает пересылку данных через равные промежутки времени, причем подтверждения приема не используются. Этот режим предназначен для пересылки оцифрованной видео- и аудиоинформации.

Пакеты данных пересылаются порциям, которые имеют размер, кратный 32 битам, и называются квадлетами (guadlets). При этом пакеты начинаются, по меньшей мере, с двух квадлетов заголовка, после чего следует переменное число квадлетов полезной информации. Для заголовка и полезных данных контрольные суммы ( CRC ) указываются отдельно. Длина заголовков асинхронных пакетов составляет, как минимум , 4 квадлета. У изохронных пакетов может быть заголовок длиной 2 квадлета, поскольку единственным необходимым при этом адресом является номер канала.

IEEE 1394 выделяет следующие функции устройств:

  • Хозяин цикла (cycle master) - выполняется корневым узлом, имеет наивысший приоритет доступа к шине, обеспечивает общую синхронизацию остальных устройств на шине, а также изохронных сеансов передачи данных.
  • Диспетчер шины (bus manager) управляет питанием шины и выполняет некоторые функции оптимизации.
  • Диспетчер изохронных ресурсов ( isochronous resource manager ) распределяет временные интервалы среди узлов, собирающихся стать передатчиками (talkers).

Для подключения к данному интерфейсу применяется 6-контактный соединитель. Используемый при этом кабель имеет круглую форму и содержит:

В IEEE 1394b допускается применять также простые UTP -кабели 5-й категории, но только на скоростях до 100 Мбит/с. Для достижения максимальных скоростей на максимальных расстояниях предусмотрено использование оптоволокна (пластмассового - для длины до 50 метров, и стеклянного - для длины до 100 метров).

Единственным реальным соперником USB 2.0 в борьбе за сердца и кошельки пользователей является интерфейс FireWire, называемый также IEEE1394. В настоящее время этот стандарт все еще дороже своего конкурента и менее распространен.


Первый вариант с 6-контактным разъемом IEEE1394 предусматривает не только передачу данных, но и подачу электропитания на подключенные к соответствующему контроллеру ПК устройства IEEE1394. При этом общий ток ограничен величиной 1.5 А.

Второй вариант с 4-контактным разъемом IEEE1394 рассчитан только на передачу данных. В этом случае подключаемые устройства должны иметь автономные источники питания.

Шина IEEE 1394, используемая для подключения различного видео и аудио оборудования (телевизоры, видеомагнитофоны, видеокамеры и т. д.), осуществляющего передачу данных в цифровом коде, широко известна под названием i.LINK (это торговая марка Sony).

IrDA относится к категории wireless (беспроводных) внешних интерфейсов, однако в отличие от радио-интерфейсов, канал передачи информации создается с помощью оптических устройств. Опыт показывает, что среди других беспроводных линий передачи информации инфракрасный (ИК) открытый оптический канал является самым недорогим и удобным способом передачи данных на небольшие расстояния (до нескольких десятков метров).


Технически сам порт IrDA основан на архитектуре коммуникационного СОМ-порта ПК, который использует универсальный асинхронный приемо-передатчик UART и работает со скоростью передачи данных 2400-115200 bps. Связь в IrDA полудуплексная, т.к. передаваемый ИК-луч неизбежно засвечивает соседний PIN-диодный усилитель приемника. Воздушный промежуток между устройствами позволяет принять ИК-энергию только от одного источника в данный момент.

Первым стандартом, принятым IrDA (Infrared Data Association ), был, так называемый, Serial Infrared standart (SIR). Данный стандарт позволял обеспечивать передачу информации со скоростью 115.2 kb/s. В 1994 году IrDA опубликовала спецификацию на общий стандарт, получивший название IrDA-standart, который включал в себя описание Serial Infrared Link (последовательная инфракрасная линия связи), Link Access Protocol (IrLAP) (протокол доступа) и Link Management Protocol (IrLMP) (протокол управления). И, наконец, в ноябре 1995 года Microsoft Corporation заявила о внесении программного обеспечения, обеспечивающего инфракрасную связь, использующую IrDA-standart, в стандартный пакет операционной системы Windows'95. В настоящее время IrDA-standart - самый распространенный стандарт для организации передачи информации по открытому инфракрасному каналу.

Активно продвигаемая консорциумом Bluetooth Special Interest Group (Bluetooth SIG), технология Bluetooth предназначена для построения так называемых персональных беспроводных сетей (personal area network). Оборудование Bluetooth работает в диапазоне частот 2.4 ГГц, для передачи трафика используется метод расширения спектра со скачкообразной перестройкой частоты.


К существенным недостаткам этой технологии следует отнести излишнюю гибкость спецификаций Bluetooth, вследствие которой продукты разных производителей оказываются несовместимы друг с другом. Эта проблема частично решена в версии Bluetooth v1.1, появившейся в 2001 году.

Согласно спецификации Bluetooth, два совместимых устройства должны взаимодействовать друг с другом на расстоянии до 10 метров. Например, можно свободно перемещаться, оставив телефон на столе и разговаривая по гарнитуре. Это действительно удобно и просто.

Что касается IrDA, то он эффективен для обеспечения беспроводной связи между персональным компьютером и периферийными устройствами на небольшом расстоянии, и сегодня практически уже нет мало-мальски уважающей компании, которая бы не производила компоненты для ИК портов.

Ну, а время Bluetooth все еще не пришло, хотя многие пророчат ему светлое будущее. Дело теперь за совместимостью устройств от разных производителей и доступной ценой самого Bluetooth.

FireWire представляет собой стандарт высокоскоростной шины последовательного типа. Он необходим для передачи цифрового контента между компьютерными устройствами и различной электроникой. Данный стандарт на сегодня является устаревшим, а использовали его такие крупные бренды как Sony, Apple, Creative, Yamaha и др.

История создания интерфейса

Комитет по микрокомпьютерным стандартам решился на очень важный шаг. Так, в 1986 году осуществилось объединение сразу нескольких вариаций последовательной шины. Это делалось в первую очередь в угоду универсализму, чтобы такие шины все-таки развивались в плане технологий по единому варианту.

При этом непосредственной разработкой FireWire с самого начала занялась именно корпорация Apple. Это произошло в 1992 году, а вот сам стандарт IEEE 1394 был официально принят в 1995 году. Что касается данной технологии, то она создавалась длительное время, но разработка окончилась гораздо раньше.

подключение к выходу firewire

Поэтому с 2010 года стандарт FireWire практически перестал применяться в материнских платах. Его еще можно кое-где встретить, например, в премиальном сегменте IT. Но массовый рынок интерфейс так и не захватил.

Особенности интерфейса FireWire

Если рассматривать кабель, то он состоит из двух витых пар, распаянных разным образом с двух сторон. В плане топологии предельная длина пути достигает 16, а количество устройств может составлять 64. Важной особенностью топологии является древовидная структура. Что касается разъемов, то их может быть максимум 4.

ipod firewire

Скоростные возможности FireWire

Такой интерфейс демонстрирует очень хорошие показатели скорости передачи информации. Речь идет о 400 Мбит/с и выше. Если измерять скорость в мегабайтах, то это от 50 и до 400 (в самых поздних версиях). Этого хватает, чтобы без проблем транслировать мультимедиа контент.

FireWire 400, 800, S800T, S3200

Сразу стоит заметить, что именно так могут обозначаться версии стандарта. Причем эти цифры говорят о максимальной пропускной способности шины. Самые простые и одновременно первые интерфейсы FireWire 400 (IEEE 1394, IEEE 1394a) обеспечивают скорость передачи данных до 400 мегабит в секунду. FireWire 800 (IEEE 1394b) дает возможность наслаждаться транслированием контента до 800 мегабит в секунду.


Почему FireWire ещё называют IEEE 1394, в чем разница?

По своей сути FireWire и есть IEEE 1394. При этом FireWire является стандартом относительно высокоскоростной шины IEEE 1394. Интересно, что интерфейс FireWire больше связывают все же с продукцией Apple, ведь эта корпорация и занималась основной разработкой стандарта. А в остальных случаях это IEEE 1394, потому что так изначально называлась последовательная шина высокой скорости.

Разъемы подключения, виды IEEE 1394

  • IEEE 1394a (четырехконтактный). Одна витая пара принимает сигнал, а вторая пара занимаемся его транспортировкой.
  • IEEE 1394a (шестиконтактный). Для питания предусмотрены еще два провода.
  • IEEE 1394b (девятиконтактный). Еще несколько контактов для работы с информацией, а также один специальный контакт в качестве резервного.
  • IEEE 1394c (восьмиконтактный). Унифицированный разъем для телекоммуникаций с дополнительным фиксатором.

IEEE 1394 появился в 1995 году для передачи видеопотоков. В дальнейшем использовался и во внешних накопителях благодаря отличной пропускной способности (до 400 Мбит/с). Его доработанная версия IEEE 1394а оказалась утверждена в 2000 году. Совместимость была существенно улучшена, а также повысилась надежность и безопасность соединения.

Более существенные изменения коснулись стандарта IEEE 1394b, который стал актуальным с 2002 года. В результате была повышена максимальность скорость до 800 Мбит/с (в некоторых случаях и до 1600 Мбит/с). Здесь для существенных расстояний предусмотрено использование кабеля волоконно-оптического типа. Более того, в 2007 году появилась на свет спецификация S3200, скорость которой достигает невероятных 3,2 Гбит/с, а кабель может быть 100-метровой длины.

Что касается интерфейса IEEE 1394.1, то он оказался утвержден в 2004 году, чтобы строить гигантские сети с невероятным количеством устройств. А вот IEEE 1394c был принят в 2006 году в качестве основного стандарта для подключения Ethernet-сетей и витопарного кабеля.

Как и где используют FireWire?

Сфер использования FireWire достаточно много. В основном интерфейс применяется для реализации компьютерных и интернет сетей. Также шину широко используют производители RAID-массивов и жестких дисков. С помощью стандарта осуществляется подключение как видео, так и аудио техники. Офисное оборудование (сканеры, принтеры) тоже активно использует IEEE 1394.

Чаще всего стандарт применяется в качестве эффективного инструмента захвата видео и фильмов с MiniDV-видеокамеры. FireWire известен и благодаря подключению компьютерных устройств к корпусам с внешними накопителями. Контроллеры IEEE 1394 часто выполняют роль отладчиков при помощи повышенной пропускной способности.

Звуковые карты и FireWire

Музыкальный бизнес активно использует звуковые карты с интерфейсом FireWire. И здесь причин несколько. Во-первых, благодаря стандарту звукорежиссеры и диджеи могут устанавливать сразу несколько и более звуковых карт на единой шине. Во-вторых, ширины канала хватает, чтобы свободно осуществлять мультиканальную запись, либо же соответствующее воспроизведение музыки. Особое внимание заслуживают звуковые карты от именитых брендов APOGEE, RME и др.

Преимущества и недостатки FireWire

Стандарт имеет много плюсов, но и некоторые минусы.

  • высокая скорость для качественной передачи мультимедиа;
  • подключение большого количества устройств (до 63);
  • горячее подключение без необходимости отключать компьютер;
  • шина снабжается собственным источником питания;
  • гибкость в плане топологии (эффект равноправия и прямое подключение техники без ПК);
  • открытая архитектура без специализированного ПО.
  • не самое большое число поддерживаемого оборудования;
  • дорогое удовольствие для производителей устройств;
  • опаздывание в исправлении ошибок в последующих версиях.

Переходники и конвертеры FireWire

Сегодня можно отыскать самые разные переходники, которые позволяют подключать практически любое оборудование с использованием FireWire. Особой популярностью пользуются конвертеры с FireWire на USB. Но во многих случаях присутствуют некоторые проблемы, связанные с увеличенными задержками передачи сигнала. Могут возникать и разнообразные ошибки. Поэтому данные переходники подойдут для непритязательных пользователей и новичков, нежели для профессионалов.

Конкуренты FireWire

Пожалуй, главным конкурентом FireWire является интерфейс USB. На протяжении длительного периода времени стандарт USB вел ожесточенную борьбу с детищем Apple. И если вначале FireWire выигрывал за счет быстроты передачи сигнала, то в дальнейшем ситуация изменилась.

usb vs firewire

С появлением USB 2.0, а потом и USB 3.0, интерфейс IEEE 1394 начал уходить на задний план.

Почему FireWire уже не актуален?

К сожалению, FireWire на данный момент является устаревшим. Его активное производство и внедрение завершилось в 2013 году. При этом на смену ему пришел аппаратный интерфейс нового поколения Thunderboll от все той же Apple. Примечательно, что данный стандарт разрабатывался совместно с Intel. И этот передовой интерфейс смог достаточно уверенно и быстро заменить FireWire практически во всех сферах. Thunderbolt обеспечивает скорость до 20 Гбит/с, комбинируя интерфейсы DisplayPort и PCI Express.

Прямо сейчас будет сложно найти в свободной продаже компьютер или другое оборудование с FireWire на борту. Однако многие профи из мира музыки и звука до сих пор высоко ценят данную шину, ведь с ее помощью легко проводить прямые трансляции, передавая изображение и звучание оригинального качества. Более того, многие видеокамеры можно подключить напрямую друг к другу только с помощью FireWire.

Читайте также: