Что такое flash память в ардуино

Обновлено: 28.06.2024

В микроконтроллерах, используемых на платах Arduino (например, ATmega168), есть три вида памяти:
- Флэш-память - это место, где хранится скетч Arduino.
- SRAM (статическая память с произвольным доступом) - это место, где эскиз создает переменные и управляет ими при запуске.
- EEPROM (энергонезависимая память) - это область памяти, которую программисты могут использовать для хранения постоянной информации.

Флэш-память и EEPROM энергонезависимы (информация сохраняется после выключения питания). Память SRAM энергозависима и запись в память будет утеряна при выключении питания.

Примечание. Флэш-память (PROGMEM) может быть заполнена только во время записи программы. Вы не можете изменить значения во флэш-памяти после запуска программы.

Объемы памяти для различных микроконтроллеров, используемых на платах Arduino, следующие:

ATMega168 ATMega328P ATmega1280 ATmega2560
Flash
(Исп. 1 кБайт для загрузчика)
16 kBytes32 kBytes128 kBytes256 kBytes
SRAM1024 bytes2048 bytes8 kBytes8 kBytes
EEPROM512 bytes1024 bytes4 kBytes4 kBytes

Необходимо обратить внимание, что Flash (программная) память намного больше, чем доступная SRAM. Когда вы создаете переменные на языке Arduino, такие как:

Вы копируете 33 байта (1 символ = 1 байт плюс завершающий нуль) из памяти программы в SRAM перед ее использованием. 33 байта - это не так много памяти из допустимых 1024 байт, но если для примера требуются большие структуры данных, например, большой объем текста для отправки на дисплей или большая таблица поиска, использовать флеш-память непосредственно для хранения может быть единственным вариантом. Для этого используйте ключевое слово PROGMEM.

Версия 1.0 IDE Arduino представила синтаксис F() для хранения строк во флэш-памяти, а не в ОЗУ. например:

Serial.println (F(" This string will be stored in flash memory "));


Тип Чтение из программы Запись из программы Очистка при перезагрузке
Flash Да, PROGMEM Можно, но сложно Нет
SRAM Да Да Да
EEPROM Да Да Нет

EEPROM представляет собой область памяти, состоящую из элементарных ячеек с размером в один байт (как SRAM). Объём EEPROM разный у разных моделей МК:

  • ATmega328 (Arduino UNO, Nano, Pro Mini): 1 кБ
  • ATmega2560 (Arduino Mega): 4 кБ
  • ATtiny85 (Digispark): 512 Б

Важный момент: все ячейки имеют значение по умолчанию (у нового чипа) 255.

Скорость работы с EEPROM (время не зависит от частоты системного клока):

Возможны искажения при записи данных в EEPROM при слишком низком VCC (напряжении питания), настоятельно рекомендуется использовать BOD или вручную мониторить напряжение перед записью.

При использовании внутреннего тактового генератора на 8 МГц, его отклонение не должно быть выше 10% (7.2-8.8 МГц), иначе запись в EEPROM или FLASH скорее всего будет производиться с ошибками. Соответственно все разгоны внутреннего клока недопустимы при записи EEPROM или FLASH.

Библиотека avr/eeprom.h

Запись:

Обновление:

Макросы:

Рассмотрим простой пример, в котором происходит запись и чтение единичных типов данных в разные ячейки:

Точно так же можно хранить массивы:

Ну и напоследок, запись и чтение блока через EEMEM. Адрес придётся преобразовать в (const void*) вручную:

Библиотека EEPROM.h

В отличие от avr/eeprom.h у нас нет отдельных инструментов для работы с конкретными типами данных, отличными от byte, и сделать write/update/read для float/long/int мы не можем. Но зато у нас есть всеядный put/get, который очень удобно использовать! Также можем пользоваться тем, что нам даёт avr/eeprom.h, которая подключается автоматически с EEPROM.h. Рассмотрим пример с чтением/записью байтов:

Логика работы с адресами такая же, как в предыдущем пункте урока! Обратите внимание на работу с EEPROM как с массивом, можно читать, писать, сравнивать, и даже использовать составные операторы, например EEPROM[0] += 10 , но это работает только для элементарных ячеек, байтов. Теперь посмотрим, как работает put/get:

Гораздо удобнее чем write_block и read_block, не правда ли? Put и get сами преобразовывают типы и сами считают размер блока данных, использовать их очень приятно. Они работают как с массивами, так и со структурами.

EEPROM.h + avr/eeprom.h

Ну и конечно же, можно использовать одновременно все преимущества обеих библиотек, например автоматическую адресацию EEMEM и put/get. Рассмотрим на предыдущем примере, вместо ручного задания адресов используем EEMEM, но величину придётся привести к целочисленному типу, сначала взяв от него адрес, т.е. (int)&адрес_еемем

С возможностями библиотек разобрались, перейдём к практике.

Реальный пример

Рассмотрим пример, в котором происходит следующее: две кнопки управляют яркостью светодиода, подключенного к ШИМ пину. Установленная яркость сохраняется в EEPROM, т.е. при перезапуске устройства будет включена яркость, установленная последний раз. Для опроса кнопок используется библиотека GyverButton. Для начала посмотрите на первоначальную программу, где установленная яркость не сохраняется. Программу можно чуть оптимизировать, но это не является целью данного урока.

  • Подключить библиотеку EEPROM.h
  • При запуске: чтение яркости из EEPROM и включение светодиода
  • При клике: запись актуального значения в EEPROM

Полезные трюки

Инициализация

  1. Чтение из EEPROM в переменную
  2. Использование переменной по назначению

Рассмотрим на всё том же примере со светодиодом и кнопками:

Теперь при первом запуске мы получим инициализацию нужных ячеек. Если нужно переинициализировать EEPROM, например в случае добавления новых данных, достаточно изменить наш ключ на любое другое значение в пределах одного байта (0-254). Я пишу именно до 254, потому что 255 является значением ячейки по умолчанию и наш трюк не сработает.

Скорость

Как я писал выше, скорость работы с EEPROM составляет:

При большом желании можно использовать ячейку вместо переменной, т.е. выше мы с вами рассматривали пример, в котором EEPROM читался в переменную в программе, и дальнейшая работа происходила уже с ней. При сильной нехватке оперативной памяти можно читать значение напрямую из EEPROM, ведь это занимает ничтожно мало времени. А вот с записью всё гораздо хуже, там целых 3.3 мс. Например так:

Для изменения значения придётся прочитать ячейку, выполнить нужные операции, и снова в неё записать. Ещё один удобный хак: можно ввести макросы на чтение и запись определённых значений, например:

Получим удобные макросы, с которыми писать код будет чуть быстрее и удобнее, т.е. строка SET_MODE(3) запишет 3 в ячейку 0

Уменьшение износа

Посмотрим на всё том же примере:

    Ёмкий конденсатор по питанию микроконтроллера, позволяющий сохранить работу МК после отключения питания на время, достаточное для записи в EEPROM (

Вариантов уменьшения износа ячеек EEPROM можно придумать много, уникально под свою ситуацию. Есть даже библиотеки готовые, например EEPROMWearLevel. Есть очень интересная статья на Хабре, там рассмотрено ещё несколько хороших алгоритмов и даны ссылки на ещё большее их количество.

Видео

Поэтому сначала нужно сделать так, чтобы мы могли с лёгкостью подключиться к микросхеме флеш-памяти. Для этого можно воспользоваться либо специальным переходником, к которому придётся припаять микросхему, либо (что предпочтительнее) использовать панель с нулевым усилением (т.н. панель ZIF , купить можно на Али).

Флеш-память припаяна к плате-переходнику

Флеш-память припаяна к плате-переходнику

А вот так выглядит микросхема флеш-памяти в ZIF-панели:

Флеш-память в переходной панели с нулевым усилением

Флеш-память в переходной панели с нулевым усилением

И под микроскопом:

Флеш-память в панели с нулевым усилением под микроскопом

Флеш-память в панели с нулевым усилением под микроскопом

Купить ПЗУшку можно, например, в Китае.

Теперь мы можем использовать макетную плату (бредборд) и с лёгкостью подключаться к микросхеме.

2 Подключение Arduino к микросхеме flash-памяти 25L8005

Назначение выводов микросхемы флеш-памяти 25L8005

Назначение выводов микросхемы флеш-памяти 25L8005

Кстати, datasheet на микросхему флеш-памяти 25L8005 можно скачать в конце статьи.

Будем использовать для программирования флэш-памяти интерфейс SPI , поэтому подключимся к стандартным SPI выводам Arduino:

Соберём электрическую схему подключения микросхемы флеш-памяти MX25L8005 к Arduino.

Схема подключения микросхемы флеш-памяти 25L8005 к Arduino

Схема подключения микросхемы флеш-памяти 25L8005 к Arduino

Флеш-память на ZIF-панели, подключённая к Arduino Флеш-память на ZIF-панели, подключённая к Arduino

3 Очистка флеш-памяти с помощью Arduino

Перед тем как записывать данные в флеш-память, необходимо стереть тот сектор или страницу, в который мы собираемся записывать. Если записываемых данных немного (в нашем учебном примере это будут всего 16 байт), то достаточно стереть 1 сектор. Из документации на микросхему мы видим, что последовательность стирания такая: выставить разрешение на запись (1 байт), послать команду на стирание (1 байт) и адрес (3 байта), выставить запрет записи (1 байт). Данная последовательность приведена на рисунке ниже:

Диаграмма очистки одного сектора флеш-памяти 25L8005

Диаграмма очистки одного сектора флеш-памяти 25L8005

Именно это и делает приведённый ниже скетч:

Загрузим этот скетч в Arduino с подключённой по приведённой выше схеме микросхемой памяти. После того как он отработал, флешка готова к записи.

4 Запись данных в флеш-память с помощью Arduino

Теперь запишем на неё данные. Для примера возьмём небольшой массив из 16-ти байтов. Как видно из документации, для записи данных во флеш сначала нужно выставить разрешение на запись (1 байт), затем послать команду на запись (1 байт), передать начальный адрес (3 байта) и данные (в нашем примере 16 байт), а в конце выставить запрет записи (1 байт):

Диаграмма записи данных во флеш-память 25L8005

Диаграмма записи данных во флеш-память 25L8005

Напишем скетч, который записывает массив из 16-ти байт данных в ПЗУ :

Загрузим скетч в Arduino. Кстати, вот так выглядит на логическом анализаторе обмен по SPI между Arduino и ПЗУ 25L8005, когда выполняется данный скетч.

Временная диаграмма записи в ПЗУ массива данных по SPI

Временная диаграмма записи в ПЗУ массива данных по SPI

После выполнения данного скетча во флеш-память должен был записаться наш тестовый массив. Давайте проверим, так ли это.

4 Чтение данных из флеш-памяти с помощью Arduino

Согласно документации, чтение из флешки выполняется посредством такой последовательности: отправка команды на чтение (1 байт), начальный адрес (3 байта), а далее запрашивается столько байтов, сколько хотим прочитать из ПЗУ . Собственно, мы будем передавать в ПЗУ 16 нулей. Так как SPI – синхронный интерфейс, нам в ответ вернутся 16 записанных в ПЗУ байтов. Вот такая диаграмма приводится в описании к микросхеме:

Диаграмма чтения данных из флеш-памяти 25L8005

Диаграмма чтения данных из флеш-памяти 25L8005

Напишем скетч для чтения наших заветных 16-ти байт из микросхемы флеш-памяти 25L8005:

Загрузим скетч в Arduino и откроем монитор последовательных портов. В мониторе, как и ожидалось, 1 раз в секунду будет выводиться наш массив, считанный из флеш-памяти с помощью Arduino.

Чтение из флеш-памяти с помощью Arduino и вывод в монитор последовательных портов

Чтение из флеш-памяти с помощью Arduino и вывод в монитор последовательных портов

Временная диаграмма чтения данных из ПЗУ по SPI

Временная диаграмма чтения данных из ПЗУ по SPI

Как видно, байты этого массива соответствуют кодам ASCII строки "HELLO, SOLTAU.RU", которые мы и записали в микросхему памяти 25L8005 :-)

Похожие материалы (по тегу)

Последнее от aave

Другие материалы в этой категории:

11 комментарии

Спасибо, все понятно написано, благодаря вашей статье быстро разобрался!

Гриша, я рад, что смог вам помочь!

Доброго времени суток!
Подскажите, инструкция подходит для работы с W25Q64 ?
Пока в наличии нет (жду посылку), ищу инструкцию для работы с указанной flash памятью.
Буду благодарен за помощь!

Никита, доброго времени!
Я не изучал подробно вашу ПЗУшку W25Q64, но с первого взгляда она очень похожа на описываемую здесь. По крайней мере, подключение аналогично (если берём в том же корпусе), а на 21-ой странице datasheet приведён набор инструкций SPI, в котором команды чтения, записи, разрешения записи и некоторые другие аналогичны. Надо, конечно, ознакомиться внимательнее, но в целом ничего сложного тут нет. Действуйте согласно документации разработчика. Соберите схему и начните изучать работу с микросхемой с чтения регистров. Хорошие кандидаты для начала - регистры Device ID (0x90), JEDEC ID (0x9F). Если "пощупаете" их, прочитаете значения, которые должны там быть согласно документации, то станет понятно, что вы на верном пути, и это придаст уверенности в дальнейшем изучении.

Большое спасибо за ответ!

Доброго времени суток! Прочитал и отработал ваши примеры в данной статье на микросхеме флэш памяти W25Q32FV. Спасибо за материал. Всё работает нормально. Начал экспериментировать с кодом.

В вашем примере адрес передается тремя байтами ADDR1, ADDR2, ADDR3. Разобрался по даташиту со структурой памяти W25Q32FV но всё равно возникли вопросы.

Как записать данные в другой адрес отличного от примера? То есть, как записать и как разбить, например адрес типа 8192 (0x2000h) начального байта сектора 2, на три байта и приписать их переменным ADDR1, ADDR2, ADDR3 . Пробовал по разному. У меня получилось только побитовой передачей в цикле for.

ПРИМЕР:
const byte ADDR[24] = ; //24-битный адрес 0x2000h в двоичном виде и в массиве
for(byte b=0; b = 24; b++) //предаём 24-битный адрес побитно, вставлял его вместо ADDR1. ADDR3

И ещё вопрос не по теме:
В ардуино к сожалению не работает оператор round с указанием количества знаков после запятой.
То есть, выражение:
float number = 1,674938;
float VOLT = round(number,2); //округление до двух знаков после запятой.
НЕ РАБОТАЕТ. Оператор "round" в ардуино умеет округлять только до целых чисел.

Работает следующий вариант:
float number = 1,674938;
int NUM = round(number * 100); //умножаем на 100 и округляем до целых чисел. Получаем 167.
float VOLT = float(NUM / 100); //167 делим на 100 и получаем 1.67

Это я проверял. Это правда или я что-то не так делаю?

Сергей, что касается записи ПЗУшек, то в двух словах, ADDR1. ADDR3 - это 24-разрядный адрес, который следует читать как одно большое число. Например, адрес 8192 будет записываться как 0x002000 - теми же 24-мя битами (3 байта). Судя по тому, что я вижу в даташите, в вашем случае адрес передаётся аналогично - 3-мя байтами. Адресное пространство ПЗУшки состоит из 64-х блоков по 64 кб, т.е. в каждом блоке адреса с 0x000000 по 0x00ffff.

А что касается округления чисел. В штатной библиотеке ардуино функция round() умеет округлять только до целого числа, так и есть. Ваш вариант с умножением и потом делением рабочий. Можно ещё вот так сделать:

double p = 3.14159265359;

void setup()
Serial.begin(9600);
Serial.println(p, 10); // выводим с точностью до 10 знаков
Serial.println(roundTo(p, 2), 10); // округляем до 2-х знаков и выводим 10 после запятой
Serial.println(roundTo(p, 3), 10); // округляем до 3-х и выводим 10
Serial.println(roundTo(p, 4), 10); // округляем до 4-х и выводим 10
>

double roundTo(double value, int decimal)
double pwr = pow(10, decimal);
return (round(value * pwr) / pwr);
>

Вывод данного скетча будет:
3.1415927410
3.1400003433
3.1420006752
3.1416006088
Если обратите внимание, даже вывод числа с такой большой точностью в первой строчке уже некорректен. Микроконтроллер не очень дружит с точной математикой.

Поэтому сначала нужно сделать так, чтобы мы могли с лёгкостью подключиться к микросхеме флеш-памяти. Для этого можно воспользоваться либо специальным переходником, к которому придётся припаять микросхему, либо (что предпочтительнее) использовать панель с нулевым усилением (т.н. панель ZIF , купить можно на Али).

Флеш-память припаяна к плате-переходнику

Флеш-память припаяна к плате-переходнику

А вот так выглядит микросхема флеш-памяти в ZIF-панели:

Флеш-память в переходной панели с нулевым усилением

Флеш-память в переходной панели с нулевым усилением

И под микроскопом:

Флеш-память в панели с нулевым усилением под микроскопом

Флеш-память в панели с нулевым усилением под микроскопом

Купить ПЗУшку можно, например, в Китае.

Теперь мы можем использовать макетную плату (бредборд) и с лёгкостью подключаться к микросхеме.

2 Подключение Arduino к микросхеме flash-памяти 25L8005

Назначение выводов микросхемы флеш-памяти 25L8005

Назначение выводов микросхемы флеш-памяти 25L8005

Кстати, datasheet на микросхему флеш-памяти 25L8005 можно скачать в конце статьи.

Будем использовать для программирования флэш-памяти интерфейс SPI , поэтому подключимся к стандартным SPI выводам Arduino:

Соберём электрическую схему подключения микросхемы флеш-памяти MX25L8005 к Arduino.

Схема подключения микросхемы флеш-памяти 25L8005 к Arduino

Схема подключения микросхемы флеш-памяти 25L8005 к Arduino

Флеш-память на ZIF-панели, подключённая к Arduino Флеш-память на ZIF-панели, подключённая к Arduino

3 Очистка флеш-памяти с помощью Arduino

Перед тем как записывать данные в флеш-память, необходимо стереть тот сектор или страницу, в который мы собираемся записывать. Если записываемых данных немного (в нашем учебном примере это будут всего 16 байт), то достаточно стереть 1 сектор. Из документации на микросхему мы видим, что последовательность стирания такая: выставить разрешение на запись (1 байт), послать команду на стирание (1 байт) и адрес (3 байта), выставить запрет записи (1 байт). Данная последовательность приведена на рисунке ниже:

Диаграмма очистки одного сектора флеш-памяти 25L8005

Диаграмма очистки одного сектора флеш-памяти 25L8005

Именно это и делает приведённый ниже скетч:

Загрузим этот скетч в Arduino с подключённой по приведённой выше схеме микросхемой памяти. После того как он отработал, флешка готова к записи.

4 Запись данных в флеш-память с помощью Arduino

Теперь запишем на неё данные. Для примера возьмём небольшой массив из 16-ти байтов. Как видно из документации, для записи данных во флеш сначала нужно выставить разрешение на запись (1 байт), затем послать команду на запись (1 байт), передать начальный адрес (3 байта) и данные (в нашем примере 16 байт), а в конце выставить запрет записи (1 байт):

Диаграмма записи данных во флеш-память 25L8005

Диаграмма записи данных во флеш-память 25L8005

Напишем скетч, который записывает массив из 16-ти байт данных в ПЗУ :

Загрузим скетч в Arduino. Кстати, вот так выглядит на логическом анализаторе обмен по SPI между Arduino и ПЗУ 25L8005, когда выполняется данный скетч.

Временная диаграмма записи в ПЗУ массива данных по SPI

Временная диаграмма записи в ПЗУ массива данных по SPI

После выполнения данного скетча во флеш-память должен был записаться наш тестовый массив. Давайте проверим, так ли это.

4 Чтение данных из флеш-памяти с помощью Arduino

Согласно документации, чтение из флешки выполняется посредством такой последовательности: отправка команды на чтение (1 байт), начальный адрес (3 байта), а далее запрашивается столько байтов, сколько хотим прочитать из ПЗУ . Собственно, мы будем передавать в ПЗУ 16 нулей. Так как SPI – синхронный интерфейс, нам в ответ вернутся 16 записанных в ПЗУ байтов. Вот такая диаграмма приводится в описании к микросхеме:

Диаграмма чтения данных из флеш-памяти 25L8005

Диаграмма чтения данных из флеш-памяти 25L8005

Напишем скетч для чтения наших заветных 16-ти байт из микросхемы флеш-памяти 25L8005:

Загрузим скетч в Arduino и откроем монитор последовательных портов. В мониторе, как и ожидалось, 1 раз в секунду будет выводиться наш массив, считанный из флеш-памяти с помощью Arduino.

Чтение из флеш-памяти с помощью Arduino и вывод в монитор последовательных портов

Чтение из флеш-памяти с помощью Arduino и вывод в монитор последовательных портов

Временная диаграмма чтения данных из ПЗУ по SPI

Временная диаграмма чтения данных из ПЗУ по SPI

Как видно, байты этого массива соответствуют кодам ASCII строки "HELLO, SOLTAU.RU", которые мы и записали в микросхему памяти 25L8005 :-)

Похожие материалы (по тегу)

Последнее от aave

Другие материалы в этой категории:

11 комментарии

Спасибо, все понятно написано, благодаря вашей статье быстро разобрался!

Гриша, я рад, что смог вам помочь!

Доброго времени суток!
Подскажите, инструкция подходит для работы с W25Q64 ?
Пока в наличии нет (жду посылку), ищу инструкцию для работы с указанной flash памятью.
Буду благодарен за помощь!

Никита, доброго времени!
Я не изучал подробно вашу ПЗУшку W25Q64, но с первого взгляда она очень похожа на описываемую здесь. По крайней мере, подключение аналогично (если берём в том же корпусе), а на 21-ой странице datasheet приведён набор инструкций SPI, в котором команды чтения, записи, разрешения записи и некоторые другие аналогичны. Надо, конечно, ознакомиться внимательнее, но в целом ничего сложного тут нет. Действуйте согласно документации разработчика. Соберите схему и начните изучать работу с микросхемой с чтения регистров. Хорошие кандидаты для начала - регистры Device ID (0x90), JEDEC ID (0x9F). Если "пощупаете" их, прочитаете значения, которые должны там быть согласно документации, то станет понятно, что вы на верном пути, и это придаст уверенности в дальнейшем изучении.

Большое спасибо за ответ!

Доброго времени суток! Прочитал и отработал ваши примеры в данной статье на микросхеме флэш памяти W25Q32FV. Спасибо за материал. Всё работает нормально. Начал экспериментировать с кодом.

В вашем примере адрес передается тремя байтами ADDR1, ADDR2, ADDR3. Разобрался по даташиту со структурой памяти W25Q32FV но всё равно возникли вопросы.

Как записать данные в другой адрес отличного от примера? То есть, как записать и как разбить, например адрес типа 8192 (0x2000h) начального байта сектора 2, на три байта и приписать их переменным ADDR1, ADDR2, ADDR3 . Пробовал по разному. У меня получилось только побитовой передачей в цикле for.

ПРИМЕР:
const byte ADDR[24] = ; //24-битный адрес 0x2000h в двоичном виде и в массиве
for(byte b=0; b = 24; b++) //предаём 24-битный адрес побитно, вставлял его вместо ADDR1. ADDR3

И ещё вопрос не по теме:
В ардуино к сожалению не работает оператор round с указанием количества знаков после запятой.
То есть, выражение:
float number = 1,674938;
float VOLT = round(number,2); //округление до двух знаков после запятой.
НЕ РАБОТАЕТ. Оператор "round" в ардуино умеет округлять только до целых чисел.

Работает следующий вариант:
float number = 1,674938;
int NUM = round(number * 100); //умножаем на 100 и округляем до целых чисел. Получаем 167.
float VOLT = float(NUM / 100); //167 делим на 100 и получаем 1.67

Это я проверял. Это правда или я что-то не так делаю?

Сергей, что касается записи ПЗУшек, то в двух словах, ADDR1. ADDR3 - это 24-разрядный адрес, который следует читать как одно большое число. Например, адрес 8192 будет записываться как 0x002000 - теми же 24-мя битами (3 байта). Судя по тому, что я вижу в даташите, в вашем случае адрес передаётся аналогично - 3-мя байтами. Адресное пространство ПЗУшки состоит из 64-х блоков по 64 кб, т.е. в каждом блоке адреса с 0x000000 по 0x00ffff.

А что касается округления чисел. В штатной библиотеке ардуино функция round() умеет округлять только до целого числа, так и есть. Ваш вариант с умножением и потом делением рабочий. Можно ещё вот так сделать:

double p = 3.14159265359;

void setup()
Serial.begin(9600);
Serial.println(p, 10); // выводим с точностью до 10 знаков
Serial.println(roundTo(p, 2), 10); // округляем до 2-х знаков и выводим 10 после запятой
Serial.println(roundTo(p, 3), 10); // округляем до 3-х и выводим 10
Serial.println(roundTo(p, 4), 10); // округляем до 4-х и выводим 10
>

double roundTo(double value, int decimal)
double pwr = pow(10, decimal);
return (round(value * pwr) / pwr);
>

Вывод данного скетча будет:
3.1415927410
3.1400003433
3.1420006752
3.1416006088
Если обратите внимание, даже вывод числа с такой большой точностью в первой строчке уже некорректен. Микроконтроллер не очень дружит с точной математикой.

Читайте также: