Какой кодек лучше h 264 или h 265

Обновлено: 01.07.2024

Первые версии кодеков видеосжатия H.264 появились еще в 2013 году. Сегодня формат Н.265 уверенно вошел на рынок видеонаблюдения и диктует свои условия. Многие производители выпускают оборудование с поддержкой видеосжатия данного формата.

Формат сжатия H.264, в отличие от предыдущих кодеков MJPEG и MPEG-4 позволяет с высокой эффективностью решить задачу передачи большого количества видеопотоков высокого разрешения.

Использование в системах IP-видеонаблюдения формата H.264 обеспечивает высокое качество изображения при меньшем объеме данных, требует меньшую пропускную способность сети и меньший объем жестких дисков для хранения видеоархива. Однако есть и жирный минус. Использование Н.264 приводит к высоким нагрузкам на вычислительное оборудование.

Для того, чтобы увеличить экономичность использования вычислительных ресурсов, разработчики применяют различные методы. Например, перенос части операций на видеокарту. Благодаря этому видеокарта способна брать на себя выполнение части вычислений по декодированию. Применение этой функции обеспечилоснижение загрузки процессора до двух раз, и возможность использования процессоров меньшей мощности, а значит, и стоимости.

Перенос операций декодирования на видеокарту также позволяет сэкономить не только на серверной, но и на клиентской части системы видеонаблюдения. Для того, чтобы воспользоваться этой функцией, в настройках клиентской части программного обеспечения необходимо указать, где производить обработку – на центральном процессоре или на видеокарте.

Для снижения нагрузки на вычислительное оборудование также применяется технология видеоанализа сжатых видеопотоков от IP-камер без их полного декодирования. Применение этой технологии приводит к увеличению скорости обработки данных, за счет чего загрузка на центральный процессор снижается. Причем снижение может достигать в среднем в 4 раза.

Еще один минус кодека H.264 заключается в том, что большинство мобильных и web-клиентов для систем видеонаблюдения не поддерживают данный формат, и для того, чтобы получить видеоизображение, требуется процедура перекодирования видеопотока в MJPEG. Такая операция очень ресурсоемка и приводит к дополнительным нагрузкам на вычислительные ресурсы.

Обработка формата H.264 возможна при достаточно мощных вычислительных ресурсах мобильного устройства. Если ресурсов не хватает, видеопоток автоматически переключается в формат MJPEG. Да и сам пользователь может самостоятельно выбирать формат видеопотока.

Как видим плюсов и минусов у кодека H.264, применяемого для видеонаблюдения, достаточно много. Однако большая нагрузка на вычислительные ресурсы зачастую сводит все плюсы на нет.

Еще большую нагрузку несет новый формат Н.265. Он использует в своей работе более сильные и совершенные алгоритмы сжатия видео. При одинаковом визуальном качестве новый кодек Н.265 предполагает примерно двукратное уменьшение размера файла по сравнению с его предшественником Н.264. Это серьезно экономит место на дисковом пространстве регистраторов и видеосерверов. А вдвое меньший битрейт уменьшает трафик в сетях передачи видеоданных.

Благодаря более мощным механизмам компрессии, кодек Н.265 отлично справляется с кодированием видео высокого и высочайшего разрешения более 8K UHD (8192×4320). Причем для качественного воспроизведения видеоинформации разрешением 4К кодека необходим поток со скоростью всего 50 МВ/с.

Что немаловажно, Н.265 сжимает видео практически без потерь, качество сжатого видео остается на высоком уровне. Специальные алгоритмы компрессии устраняют присущие Н.264 артефакты, такие как зернистость или размытые края движущихся объектов.

Но самое главное преимущество кодека Н.265 заключается в том, что объем видео, обработанного по новому стандарту, оказался почти на 85% меньше, чем при использовании Н.264. Однако кодеку Н.265 требуется более мощные по производительности элементы и процессоры в оборудовании.

Двигаясь в направлении увеличесния сжатия видеоданных на рынке не так давно появился кодек H.265 + Он позволяет уменьшить битрейт с видеокамер, что в свою очередь снижает стоимость внедрения и использовать меньше дисковых массивов для хранения видеоархива.

H.265+ улучшает степень сжатия за счет трех ключевых технологий: технологии кодирования с предсказанием, технологии подавления фонового шума и технологии долгосрочного управления видеопотоком.

Как известно, камеры видеонаблюдения умеют различать моменты, когда на выделенном участке наблюдения ничего не происходит и в это время снижают качество, чтобы уменьшить нагрузку на сеть и место на жестком диске. Это может делать кодек Н.265, значения при этом все равно держатся около установленного максимума, в то время как Н.265+ может снизить его вдвое. Такая функция называется управление длительным битрейтом.

Н.265+ может также определять на видео движущиеся объекты и отделять их от фона. В то время, как эти объекты передаются в максимально хорошем качестве, на сжатие повторяющегося фона уходит меньше ресурсов. Что также является большим плюсом и снижает нагрузку на вычислительные ресурсы.

В этой статье мы не стремились рассказать подробно о всех современных видеокодеках, используемых в видеонаблюдении. Наша цель заключалась в том, чтобы показать различия форматов сжатия, а также плюсы и минусы каждого из них.

Для начала поясню, для кого написана эта статья. Она предназначена, в первую очередь, для людей, которые делают какую-либо видеопродукцию, то есть для видеооператоров, монтажеров, работающих как частники или в студиях. Но главное, эта статья будет интересна тем, кто старается делать свою работу качественно, и понимает, что такое качество. К сожалению, таких становится все меньше и меньше, так как многие на первое место ставят скорость работы, и не важно, что получится в результате.

Да простят меня любители точных наук, но в своей статье я буду применять несколько упрощенные варианты объяснений, для того, чтобы было понятно не только профессионалам, но и тем, кто не слишком разбирается в специальной терминологии. Те, кто работает с видео не первый год, помнят, что когда-то был популярным формат DV, и его кодировали в MPEG-2. Затем появился формат Full HD, потом 4К, и их стали кодировать кодеком Н.264 в формат MPEG-4.

Некоторое время назад в монтажных программах появился новый кодек Н.265, который, по заявлению производителей и по различным рекламным статьям в интернете, намного превосходит Н.264. Но все эти утверждения как-то слабо аргументированы, без конкретных примеров. Учитывая, что рекламируют чаще всего то, что не лучше старого, а даже иногда хуже, я к таким заявлениям отношусь с некоторой осторожностью. А потому, как и многие операторы, не спешу переходить на новый кодек, а пользуюсь проверенным 264-м.

Но время идет, передовой производитель должен идти в ногу со временем, и я решил самостоятельно разобраться и протестировать 265-й, чтобы сделать выводы, основанные на собственном опыте. Вот этими выводами я и поделюсь на этой странице.

Сравнение кодирования видео кодеком Н.264 и Н.265 в Adobe Premiere Pro

Хочу обратить внимание читателей на то, что я буду вести свой рассказ о кодеке Н.265 только с той позиции, как его можно применять при создании видеофильмов, без учета использования в других областях, например, в видеонаблюдении - там все совершенно по-другому. Начну с технического определения кодеков Н.264 и Н.265.

Кодек Н.264: по научному он называется MPEG-4 часть 10 или AVC (Advanced Video Coding). Появился в 2003 году, но в быту его стали использовать далеко не сразу, примерно с тех пор, как люди начали приобретать видеокамеры высокой четкости. По моему мнению, на сегодняшний день это единственный кодек, которым желательно сжимать видео, никаких конкурентов у него просто нет. Конечно, кроме 265-го.

Кодек Н.265 или HEVC (High Efficiency Video Coding - высокоэффективное кодирование видеоизображений). Поддерживаются форматы кадра до 8K (UHDTV) с разрешением 8192×4320 пикселей. Официально производители анонсировали этот кодек в 2012 году. Сначала он использовался в системах потокового IP-вещания. Затем, когда появились и стали широко использоваться форматы 4К и 8К, для которых Н.264 уже не являлся идеально подходящим, пятый пригодился и там.

Но Н.265 - не новый продукт, а, по сути, усовершенствованный 264. Изначально перед создателями ставилась задача снизить в два раза битрейт при аналогичном качестве. Если бы эта задача была выполнена, то можно было бы, используя Н.265, иметь в два раза менее мощный компьютер, либо получать в два раза легче конечный файл, при аналогичном качестве. Но это только в теории.

Вероятно, Вы знаете, что при кодировании воздействию подвергается не каждый пиксель картинки, изображение разбивается на блоки в зависимости от содержания. И главное отличие этих двух кодеков в том, что они по-разному формируют эти блоки. Другими словами, делят картинку на разное количество фрагментов. Н.265 включает в каждый блок большее количество пикселей, то есть картинка делится на меньшее количество кусочков.

Первая мысль, которая придет нормальному человеку в голову - как это, ведь от этого качество только ухудшится! Ведь если бы в каждом блоке был всего один пиксель, который бы сжимался с индивидуальными параметрами, то картинка получалась бы намного более качественной. Это, конечно, так, но реальность такова, что, к сожалению, в наше время понятие качества для производителей чего-либо отходит на второй план.

Ни с форматом 4К, ни, тем более с 8К, я не работаю, и потому в мои задачи не входит подробное тестирование этого кодека на всех форматах и при всех значениях битрейта. Я поставил цель протестировать и сравнить работу Н.265 с тем видео, которое я снимаю, именно в том формате, и той видеокамерой, которой я пользуюсь. Так я смогу решить, стоит ли вообще его применять, и если да, то для какого видео. Поэтому если у Вас другая модель камеры, или Вы снимаете в другом формате, то результаты моих тестов могут не совпадать с результатами для Ваших условий.

Мне показалось странным, что в настройках 265 в том же Премьере невозможно задать двухпроходное кодирование, а как известно, при кодировании кодеком Н.264 двухпроходное кодирование с переменным битрейтом (VBR) хоть и несколько увеличивает время, но зато картинку дает более качественную, чем другие варианты. Почему у Н.265 нет двух проходов, не могу понять. Могу только предположить, что и за один проход он кодирует настолько замечательно, что второй проход ему не нужен. Если Вам известен ответ на этот вопрос, напишите.

По информации, полученной от других операторов можно предположить, что при кодировании формата 4К с низким битрейтом, преимущество Н.265 более заметно, чем при использовании формата Full HD. Но с низким битрейтом я не работаю, для меня важно высокое качество.

Известный как High Efficiency Video Coding (HVEC) и MPEG-H Part 2, H.265 является стандартом для сжатия видео, разработанный для новейших поколений видео с высоким разрешением. Он является преемником широко используемого кодер-декодера H.264 (также называемого AVC или MPEG-4 Part 10) и предлагает некоторые существенные улучшения по сравнению с нынешней схемой сжатия. H.265 был разработан Совместной Коллективной Группой по Кодированию Видео (JCT-VC), группой экспертов по кодированию видео, которые начали работать над стандартом сжатия еще в 2010 году.

H.265

Кодек H.265 предлагает некоторые существенные улучшения по отношению к кодеку H.264, который был впервые разработан в туманные дни 2003 года. Есть очень много улучшений, которые можно рассмотреть, но здесь рассмотрены основные моменты для потребителей.

Лучшее сжатие

H.265 предлагает значительно улучшенное сжатие по сравнению с H.264. Новый кодек может сделать, почти вдвое, большее сжатие, чем его предшественник. С H.265 видео, с таким же визуальным качеством, занимало бы лишь половину памяти. В качестве альтернативы, видео с одинаковым размером файла и скоростью передачи битов, может быть значительно лучше. Часть этого улучшения связана с увеличением размера макроблока. H.264 позволяет использовать только макроблоки размером 16 x 16 пикселей, которые слишком малы, чтобы быть действительно эффективными в видео с более высоким разрешением. H.265 обеспечивает макроблоки 64 x 64 пикселя (теперь они называются единицами дерева кодирования или CTU), что позволяет повысить эффективность кодирования при всех разрешениях.

Улучшенное предсказание внутрикадрового движения

Сжатие видео зависит от предсказания движения между кадрами. Когда в пикселе нет изменений, видеокодек может сэкономить место, ссылаясь на него, а не воспроизводить его. Таким образом, улучшенное предсказание движения означает улучшенный размер файла и качество сжатия. Наряду с улучшенными стандартами сжатия в H.265 мы также находим значительные улучшения в прогнозировании движения и компенсации.

Улучшенное внутрикадровое прогнозирование

Сжатие видео также выигрывает от анализа «движения» в отдельных кадрах, что позволяет сжимать отдельные кадры видео более эффективно. Это может быть достигнуто путем описания пикселей математической функцией, а не фактическими значениями пикселей. Функция занимает меньше места, чем пиксельные данные, уменьшая размер файла. Однако кодек должен поддерживать достаточно продвинутую математическую функцию, чтобы этот метод был действительно полезным. Функция внутрикадрового предсказания H.265 гораздо более подробна, чем H.264, она допускает 33 направления движения по девяти направлениям H.264.

Параллельная обработка

В H.265 используются плитки и части, которые могут быть декодированы независимо от остальной части кадра. Это означает, что процесс декодирования можно разделить на несколько параллельных потоковых процессов, используя более эффективные возможности декодирования, на современных многоядерных процессорах. С повышением разрешения видео, такая улучшенная эффективность необходима, чтобы декодировать видео с контролируемым темпом на более низком оборудовании.

Более высокий максимальный размер кадра

Мир получает более высокое разрешение, и H.265 это поддерживает. С H.265 видео можно кодировать до 8K UHD или 8192 пикселей × 4320 пикселей. В настоящее время только несколько камер могут выпускать 8K видео, и очень немногие мониторы могут отображать такое разрешение. Но так же, как HD является сегодняшним стандартом, мы можем ожидать, что 4K и, в конечном итоге, 8K поднимется до такого же уровня внимания.

Поддержка оборудования

Кодек H.265 специально поддерживается нынешним поколением процессоров Intel. Линия процессоров Kaby Lake содержит специальные наборы инструкций для кодирования и декодирования видео H.265, как и для будущих поколений. Это дает кодеку большую выгоду от скорости и согласованности по сравнению с другими видео-кодеками высокого разрешения. Учитывая популярность и техническое превосходство кодека H.264, неудивительно, что Intel предпочла бы отказаться от своего оборудования. Конечно, это не ограничивает использование H.265 процессорами Kaby Lake, но это означает, что компьютеры, использующие чипы Kaby Lake, будут более гибко воспроизводить видео H.265. И учитывая, что вычислительные накладные расходы, необходимые для кодирования и декодирования видео высокого разрешения H.265 довольно значительны, это может означать существенное различие между версиями H.265, поддерживаемыми аппаратным и программным обеспечением.

Вывод: где найти H.265?

H.265 по-прежнему менее распространен, чем H.264, но он быстро набирает значимость на рынке. Новая операционная система Apple iPhone и iPad, iOS 11, сохраняет все видеофайлы в H.265. Новое поколение MacBook Pro включает аппаратную поддержку Kaby Lake для декодирования кодека. Формат видео также будет использоваться в веб-браузере Apple tvOS и Safari для потокового видео.

Только в прошлом месяце Microsoft выпустила бесплатное расширение для Windows 10, которое добавляет поддержку декодирования видео H.265. Содержимое 4K Netflix транслируется кодеком H.265 на поддерживаемое оборудование. С другой стороны, YouTube не использует H.265, вместо этого выбирает свою конкурирующую схему сжатия VP9.

Но в ближайшие годы, мы, скорее всего, увидим, что H.265, со своей высокой эффективность, будет доминировать на рынке.


Затраты на хранение данных зачастую становятся основным пунктом расходов при создании системы видеонаблюдения. Впрочем, они были бы несравнимо больше, если бы в мире не существовало алгоритмов, способных сжимать видеосигнал. О том, насколько эффективны современные кодеки, и какие принципы лежат в основе их работы, мы и поговорим в сегодняшнем материале.

Для большей наглядности начнем с цифр. Пускай видеозапись будет вестись непрерывно, в разрешении Full HD (сейчас это уже необходимый минимум, во всяком случае, если вы хотите полноценно использовать функции видеоаналитики) и в режиме реального времени (то есть, с фреймрейтом 25 кадров в секунду). Предположим также, что выбранное нами оборудование поддерживает аппаратное кодирование H.265. В этом случае при разных настройках качества изображения (высоком, среднем и низком) мы получим примерно следующие результаты.

Кодек

Интенсивность движения в кадре

Использование дискового пространства за сутки, ГБ

H.265 (Высокое качество)

H.265 (Высокое качество)

H.265 (Высокое качество)

H.265 (Среднее качество)

H.265 (Среднее качество)

H.265 (Среднее качество)

H.265 (Низкое качество)

H.265 (Низкое качество)

H.265 (Низкое качество)

Но если бы сжатия видео не существовало в принципе, мы бы увидели совсем иные цифры. Попробуем разобраться, почему. Видеопоток представляет собой не что иное, как последовательность статичных картинок (кадров) в определенном разрешении. Технически каждый кадр является двумерным массивом, содержащим информацию об элементарных единицах (пикселях), формирующих изображение. В системе TrueColor для кодирования каждого пикселя требуется 3 байта. Таким образом, в приведенном примере мы бы получили битрейт:

Учитывая, что в сутках 86400 секунд, цифры выходят поистине астрономические:

148×86400/1024=12487 ГБ

Итак, если бы мы записывали видео без сжатия в максимальном качестве при заданных условиях, то для хранения данных, полученных с одной единственной видеокамеры в течение суток нам бы потребовалось 12 терабайт дискового пространства. Но даже система безопасности квартиры или малого офиса предполагает наличие, как минимум, двух устройств видеофиксации, тогда как сам архив необходимо сохранять в течение нескольких недель или даже месяцев, если того требует законодательство. То есть, для обслуживания любого объекта, даже весьма скромных размеров, потребовался бы целый дата-центр!

К счастью, современные алгоритмы сжатия видео помогают существенно экономить дисковое пространство: так, использование кодека H.265 позволяет сократить объем видео в 90 (!) раз. Добиться столь впечатляющих результатов удалось благодаря целому стеку разнообразных технологий, которые давно и успешно применяются не только в сфере видеонаблюдения, но и в «гражданском» секторе: в системах аналогового и цифрового телевидения, в любительской и профессиональной съемке, и многих других ситуациях.

Наиболее простой и наглядный пример — цветовая субдискретизация. Так называют способ кодирования видео, при котором намеренно снижается цветовое разрешение кадров и частота выборки цветоразностных сигналов становится меньше частоты выборки яркостного сигнала. Такой метод сжатия видеоданных полностью оправдан как с позиции физиологии человека, так и с точки зрения практического применения в области видеофиксации. Наши глаза хорошо замечают разницу в яркости, однако гораздо менее чувствительны к перепадам цвета, именно поэтому выборкой цветоразностных сигналов можно пожертвовать, ведь большинство людей этого попросту не заметит. В то же время, сложно представить, как в розыск объявляют машину цвета «паука, замышляющего преступление»: в ориентировке будет написано «темно-серый», и это правильно, ведь иначе прочитавший описание авто даже не поймет, о каком оттенке идет речь.

А вот со снижением детализации все оказывается уже совсем не так однозначно. Технически квантование (то есть, разбиение диапазона сигнала на некоторое число уровней с последующим их приведением к заданным значениям) работает великолепно: используя данный метод, размер видео можно многократно уменьшить. Но так мы можем упустить важные детали (например, номер проезжающего вдалеке автомобиля или черты лица злоумышленника): они окажутся смазаны и такая запись будет для нас бесполезной. Как же поступить в этой ситуации? Ответ прост, как и все гениальное: стоит взять за точку отсчета динамические объекты, как все тут же становится на свои места. Этот принцип успешно используется со времен появления кодека H.264 и отлично себя зарекомендовал, открыв ряд дополнительных возможностей для сжатия данных.

Это было предсказуемо: разбираемся, как H.264 сжимает видео

Вернемся к таблице, с которой мы начали. Как видите, помимо таких параметров, как разрешение, фреймрейт и качество картинки решающим фактором, определяющим конечный размер видео, оказывается уровень динамичности снимаемой сцены. Это объясняется особенностями работы современных видеокодеков вообще, и H.264 в частности: используемый в нем механизм предсказания кадров позволяет дополнительно сжимать видео, при этом практически не жертвуя качеством картинки. Давайте посмотрим, как это работает.

Кодек H.264 использует несколько типов кадров:

  • I-кадры (от английского Intra-coded frames, их также принято называть опорными или ключевыми) — содержат информацию о статичных объектах, не меняющихся на протяжении длительного времени.
  • P-кадры (Predicted frames, предсказанные кадры, также именуемые разностными) — несут в себе данные об участках сцены, претерпевших изменения по сравнению с предыдущим кадром, а также ссылки на соответствующие I-кадры.
  • B-кадры (Bi-predicted frames, или двунаправленные предсказанные кадры) — в отличие от P-кадров, могут ссылаться на I-, P- и даже другие B-кадры, причем как на предыдущие, так и на последующие.

[НАЧАЛО СЪЕМКИ] I-P-P-P-P-P-P-P-P-P-P-P-P-P- .

Поскольку в процессе вычитания возможны ошибки, приводящие к появлению графических артефактов, то через какое-то количество кадров схема повторяется: вновь формируется опорный кадр, а вслед за ним — серия кадров с изменениями.

Полное изображение формируется путем «наложения» P-кадров на опорный кадр. При этом появляется возможность независимой обработки фона и движущиеся объектов, что позволяет дополнительно сэкономить дисковое пространство без риска упустить важные детали (черты лиц, автомобильные номера и т. д.). В случае же с объектами, совершающими однообразные движения (например, вращающимися колесами машин) можно многократно использовать одни и те же разностные кадры.


Независимая обработка статических и динамических объектов позволяет сэкономить дисковое пространство

Данный механизм носит название межкадрового сжатия. Предсказанные кадры формируются на основе анализа широкой выборки зафиксированных состояний сцены: алгоритм предвидит, куда будет двигаться тот или иной объект в поле зрения камеры, что позволяет существенно снизить объем записываемых данных при наблюдении за, например, проезжей частью.


Кодек формирует кадры, предсказывая, куда будет двигаться объект

В свою очередь, использование двунаправленных предсказанных кадров позволяет в несколько раз сократить время доступа к каждому кадру в потоке, поскольку для его получения будет достаточно распаковать только три кадра: B, содержащий ссылки, а также I и P, на которые он ссылается. В данном случае цепочку кадров можно изобразить следующим образом.

[НАЧАЛО СЪЕМКИ] I-B-P-B-P-B-P-B-P-B-P-B-P-B-P-B-P-…

Такой подход позволяет существенно повысить скорость быстрой перемотки с показом и упростить работу с видеоархивом.

В чем разница между H.264 и H.265?


В H.265 используются все те же принципы сжатия, что и в H.264: фоновое изображение сохраняется единожды, а затем фиксируются лишь изменения, источником которых являются движущиеся объекты, что позволяет значительно снизить требования не только к объему хранилища, но и к пропускной способности сети. Однако в H.265 многие алгоритмы и методы прогнозирования движения претерпели значительные качественные изменения.

Так, обновленная версия кодека стала использовать макроблоки дерева кодирования (Coding Tree Unit, CTU) переменного размера с разрешением до 64×64 пикселей, тогда как ранее максимальный размер такого блока составлял лишь 16×16 пикселей. Это позволило существенно повысить точность выделения динамических блоков, а также эффективность обработки кадров в разрешении 4K и выше.

Кроме того, H.265 обзавелся улучшенным deblocking filter — фильтром, отвечающим за сглаживание границ блоков, необходимым для устранения артефактов по линии их стыковки. Наконец, улучшенный алгоритм прогнозирования вектора движения (Motion Vector Predictor, MVP) помог заметно снизить объем видео за счет радикального повышения точности предсказаний при кодировании движущихся объектов, чего удалось достичь за счет увеличения количества отслеживаемых направлений: если ранее учитывалось лишь 8 векторов, то теперь — 36.

Помимо всего перечисленного выше, в H.265 была улучшена поддержка многопоточных вычислений: квадратные области, на которые разбивается каждый кадр при кодировании, теперь могут обрабатываться независимо одна от другой. Появилась и поддержка волновой параллельной обработки данных (Wavefront Parallelel Processing, WPP), что также способствует повышению производительности сжатия. При активации режима WPP обработка CTU осуществляется построчно, слева направо, однако кодирование каждой последующей строки может начаться еще до завершения предыдущей в том случае, если данных, полученных из ранее обработанных CTU, для этого достаточно. Кодирование различных строк CTU с временной задержкой со сдвигом, наряду с поддержкой расширенного набора инструкций AVX/AVX2 позволяет дополнительно повысить скорость обработки видеопотока в многоядерных и многопроцессорных системах.

Флэш-карты для видеонаблюдения: когда значение имеет не только размер

И вновь вернемся к табличке, с которой мы начали сегодняшний разговор. Давайте подсчитаем, сколько дискового пространства нам понадобится в том случае, если мы хотим хранить видеоархив за последние 30 дней при максимальном качестве видеозаписи:

138×30/1024 = 4

По нынешним меркам 4 терабайта для винчестера индустриального класса — практически ничто: современные жесткие диски для видеонаблюдения имеют емкость до 14 терабайт и могут похвастаться рабочим ресурсом до 360 ТБ в год при MTBF до 1.5 миллионов часов. Что же касается карт памяти, то здесь все оказывается не так однозначно.

В IP-камерах флэш-карты играют роль резервных хранилищ: данные на них постоянно перезаписываются, чтобы в случае потери связи с видеосервером недостающий фрагмент видеозаписи можно было восстановить из локальной копии. Такой подход позволяет существенно повысить отказоустойчивость всей системы безопасности, однако при этом сами карты памяти испытывают колоссальные нагрузки.

При бытовом использовании подобное попросту невозможно, поэтому даже самая бюджетная карта памяти способна прослужить вам несколько лет к ряду без единого сбоя. А все благодаря алгоритмам выравнивания износа (wear leveling). Схематично их работу можно описать следующим образом. Пусть в нашем распоряжении есть новенькая флеш-карта, только что из магазина. Мы записали на нее несколько видеороликов, использовав 7 из 16 гигабайт. Через некоторое время мы удалили часть ненужных видео, освободив 3 гигабайта, и записали новые, объем которых составил 2 ГБ. Казалось бы, можно задействовать только что освободившееся место, однако механизм выравнивания износа выделит под новые данные ту часть памяти, которая ранее никогда не использовалась. Хотя современные контроллеры «тасуют» биты и байты куда более изощренно, общий принцип остается неизменным.


Напомним, что кодирование битов информации происходит путем изменения заряда в ячейках памяти за счет квантового туннелирования электронов сквозь слой диэлектрика, что вызывает постепенный износ диэлектрических слоев с последующей утечкой заряда. И чем чаще меняется заряд в конкретной ячейке, тем раньше она выйдет из строя. Выравнивание износа как раз направлено на то, чтобы каждая из доступных ячеек перезаписывалась примерно одинаковое количество раз и, таким образом, способствует увеличению срока службы карты памяти.

Нетрудно догадаться, что wear leveling перестает играть хоть сколько-нибудь значимую роль в том случае, если флэш-карта постоянно перезаписывается целиком: здесь на первый план уже выходит выносливость самих чипов. Наиболее объективным критерием оценки последней является максимальное количество циклов программирования/стирания (program/erase cycle), или, сокращенно, циклов P/E, которое способно выдержать флеш-память. Также достаточно точным и в данном случае наглядным (так как мы можем заранее рассчитать объемы перезаписи) показателем является коэффициент TBW (Terabytes Written). Если в технических характеристиках указан лишь один из перечисленных показателей, то вычислить другой не составит особого труда. Достаточно воспользоваться следующей формулой:

TBW = (Емкость × Количество циклов P/E)/1000

Так, например, TBW флеш-карты емкостью 128 гигабайт, ресурс которой составляет 200 P/E, будет равен: (128 × 200)/1000 = 25,6 TBW.

Давайте считать дальше. Выносливость карт памяти потребительского уровня составляет 100–300 P/E, и 300 — это в самом лучшем случае. Опираясь на эти цифры, мы можем с достаточно высокой точностью оценить срок их службы. Воспользуемся формулой и заполним новую таблицу для карты памяти емкостью 128 ГБ. Возьмем за ориентир максимальное качество картинки в Full HD, то есть в сутки камера будет записывать 138 ГБ видео, как мы выяснили ранее.

Читайте также: