Информация в формализованном виде предназначенная для ее обработки с помощью компьютеров это

Обновлено: 06.07.2024

Слово «информация» известно в наше время каждому. Между тем вошло оно в постоянное употребление не так давно, в середине двадцатого века, с подачи Клода Шеннона. Информациейназывается опосредованный формами связи результат отражения изменяемого объекта изменяющимся с целью сохранения их системной целостности. Информация первична и содержательна - это категория, поэтому в категориальный аппарат науки она вводится портретно - описанием, через близкие категории: материя, система, структура, отражение. В материальном мире (человека) информация материализуется через свой носитель и благодаря нему существует. Сущность материального мира предстаёт перед исследователем в единстве формы и содержания. Передаётся информация через носитель. Материальный носитель придаёт информации форму. В процессе формообразования производится смена носителя информации. Определения термин информация не имеет, так как не является понятием. Существует информация в каналах связи систем управления. Не следует путать категорию информация с понятием знание. Знание определяется через категорию информация.

Сигнал (от латинского signum - знак) представляет собой любой процесс, несущий информацию.

Данные- это информация, представленная в формализованном виде и предназначенная для обработки ее техническими средствами, например, ЭВМ.

Информация в переводе с латинского языка означает: разъяснение, изложение чего-либо или сведения о чём-либо.

- электромагнитная (информация электромагнитных волн).

Свойства информации.

Информация выступает как свойство объектов и явлений (процессов) порождать многообразие состояний, которые посредством отражения передаются от одного объекта к другому и запечатлеются в его структуре (возможно, в измененном виде).

Целевая функция информации характеризуется способностью влиять на процессы управления, на соответствующее целям управления поведением людей. В этом, по существу, и состоит полезность или ценность информации.

Информация охватывает все сферы, все отрасли общественной жизни, прочно входит в жизнь каждого человека, воздействует на его образ мышления и поведение. Она обслуживает общение людей, социальных групп, классов, наций и государств, помогает людям овладеть научным мировоззрением, разбираться в многообразных явлениях и процессах общественной жизни, повышать уровень своей культуры и образованности, усваивать и соблюдать законы и нравственные принципы. Огромную, ничем незаменимую роль выполнят информация в управленческой деятельности. По существу, без информации не может быть и речи о любом виде управления, о целенаправленной деятельности взаимосвязанных объектов и систем.

Меры информации: синтаксическая, семантическая, прагматическая.

Синтаксическая (техническая) - это точность, надежность, скорость передачи сигналов и т.д.; Семантическая - это передача смысла текста с помощью кодов;

Прагматическая - это насколько эффективно информация влияет на поведение объекта.

Основные показатели качества информации

Анализируя информацию, мы сталкиваемся с необходимостью оценки качества и определения количества получения информации. Определить качество информации чрезвычайно сложно, а часто и вообще невозможно. Какие-либо сведения, например исторические, могут десятилетиями считаться ненужными и вдруг их ценность может резко возрасти. Вместе с этим определить количество информации не только нужно, но и можно. Это, прежде всего, необходимо для того, чтобы сравнить друг с другом массивы информации, определить, какие размеры должны иметь материальные объекты (бумага, магнитная лента и т.д.), хранящие эту информацию.

Информатика (от французского information - информация и automatioque -автоматика) - область научно-технической деятельности, занимающаяся исследованием процессов получения, передачи, обработки, хранения, представления информации, решением проблем создания, внедрения и использования информационной техники и технологии во всех сферах общественной жизни; одно из главных направлений научно-технического прогресса.

В некоторых более кратких определениях информатика трактуется как особая наука о законах и методах получения и измерения, накопления и хранения, переработки и передачи информации с применением математических и технических средств. Однако все имеющиеся определения отражают наличие двух главных составляющих информатики - информации и соответствующих средств ее обработки. Бытует и такое, самое краткое определение: информатика - это информация плюс автоматика.

Информационные технологии- широкий класс дисциплин и областей деятельности, относящихся к технологиям управления и обработки данных, в том числе, с применением вычислительной техники.

В настоящее время, под информационными технологиями, чаще всего, понимают компьютерные технологии. В частности, ИТ имеют дело с использованием компьютеров и программного обеспечения для хранения, преобразования, защиты, обработки, передачи и получения информации. Специалистов по компьютерной технике и программированию часто называют ИТ-специалистами.

Для того чтобы использовать ЭВМ для обработки данных, необходимо располагать некоторым способом представления данных. Способ представления данныхбудет зависеть от того, для кого эти данные предназначены: для человека (внешнее представление) или для ЭВМ (внутреннее представление).

Во внутреннем представлении данные могут быть описаны в аналоговой (непрерывной) или цифровой (дискретной) формах. В соответствии с этим различают аналоговые (в прошлом) и цифровые (сейчас) ЭВМ.

Любые виды данных, обрабатываемых на ЭВМ, могут быть сведены к совокупности простейших форм: набор символов (текст), звук (мелодия), изображение (фотографии, рисунки, схемы), вещественные и целые числа (числовая информация).

Каждый такой вид данных должен быть некоторым универсальным образом представлен в виде набора целых чисел, т.к. ЭВМ цифровые! Правила такого представления разрабатываются научными институтами и оформляются в виде стандартов.

Во внешнем представлении все данные хранятся в виде файлов. Во многих случаях требуется ещё более высокий уровень организации данных на внешнем уровне, тогда данные группируются в базы данных.

Задачи по обработке данныхпредполагают также способы описания процесса самой обработки. Процедуры обработки данных также представляются на внешнем и внутреннем уровне. На внутреннем уровне каждая такая процедура представляет собой последовательность логических операций с целыми числами, и называется программой. Сами логические операции кодируются с помощью средств машинного языка.

Способы кодирования информации:символьный, лингвистический, табличный, графический. Любой способ кодирования характеризуется наличием основы (алфавит, тезаурус, спектр цветности, система координат, основание системы счисления и т.п.) и правил конструирования информационных образов на этой основе.

В вычислительной технике используется два состояния – включено и выключено (0 и 1). Поэтому кодирование команд, чисел, знаков в компьютере осуществляется с помощью двоичной системы счисления.

Для кодирования информации в компьютере применяется таблица символов ASCII, которая кодирует русские, латинские буквы, цифры, математические знаки и другие специальные знаки всего 256 символов. Поэтому для кодировки всех указанных символов используется восьмиразрядная последовательность цифр 0 и 1. Например, русские буквы представляются восьмиразрядными последовательностями следующим образом: А - 11000001, И - 11001011, Я - 11011101.

Защита информации- представляет собой деятельность по предотвращению утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию, то есть процесс, направленный на достижение этого состояния. В качестве стандартной модели безопасности часто приводят модель из трёх категорий:

Под конфиденциальностью понимается доступность информации только определённому кругу лиц, под целостностью - гарантия существования информации в исходном виде, под доступностью - возможность получение информации авторизованным пользователем в нужное для него время.

Выделяют и другие категории модели безопасности:

аутентичность - возможность установления автора информации;

апеллируемость - возможность доказать что автором является именно заявленный человек, и никто другой.

Передача информации- физический процесс, посредством которого осуществляется перемещение информации в пространстве. Данный процесс характеризуется наличием следующих компонентов:

История вычислительной техники и создания компьютера.

Подходя к анализу жизни общества на различных ступенях его развития с точки зрения выяснения того, что определяло в тот или иной период его выживание и прогрессивное развитие, можно заметить, что вплоть до 16 века деятельность общества была направлена на овладения веществом, то есть познание свойств вещества и изготовление сначала примитивных, а потом всё более сложных орудий труда, вплоть до механизмов и машин, позволяющих изготавливать потребительские ценности.

Затем в процессе становления индустриального общества на первый план вышла проблема овладения энергией – сначала тепловой, затем электрической и атомной. Овладение энергией позволило освоить массовое производство потребительских ценностей и, как следствие, повысить уровень жизни людей и изменить характер их труда.

С другой стороны, на протяжении тысячелетий человечество стремилось постичь тайны мироздания, составляя его модели, выделяя общие закономерности, пытаясь увидеть некоторое единство в разнообразии материальных объектов. И одним из первых обобщённых абстрактных понятий науки становится вещество. Эта идея развивалась от философии древней Греции до современной квантовой теории вещества. Казалось, что всё в мире можно объяснить, описав как совокупность взаимодействующих материальных частиц. Следующим обобщённым понятием стало понятие энергия. Его появление было связано с развитием техники, созданием двигателей, технических преобразователей энергии. Физические, химические, биологические процессы стали рассматриваться с позиции передачи и преобразования энергии. Желая исследовать всё более сложные объекты в технике, биологии, обществе, наука встала перед фактом невозможности детально описать их поведение на языке материально-энергетических моделей. В то же время людям всегда была свойственна потребность: выразить и запомнить информацию об окружающем их мире – так появилась устная речь, письменность, книгопечатание, живопись, радио, телевидение. В истории развития цивилизации произошло несколько информационных революций – преобразования общественных отношений из-за кардинальных изменений в сфере обработки информации, информационных технологий.

Первая революция связана с изобретением письменности. Появилась возможность распространения знаний и сохранения их для передачи последующим поколениям.

Вторая революция (середина 16 века) вызвана изобретением книгопечатания, которое радикальным образом изменило общество, культуру.

Третья революция (конец 19 века) обусловлена изобретением электричества.

Четвёртая революция (70-е годы 20 века) связана с изобретением персонального компьютера.

Начиная с последней трети 20 века, стали говорить об “информационном взрыве”, называя бурный рост объёмов и потоков информации. Начался постепенный переход к информационному обществу, в котором на основе овладения информацией о самых различных процессах и явлениях можно оптимально строить любую деятельность. Человек, использующий новые информационные технологии, работает в лучших условиях, труд становится творческим.

Таким образом, вещество, энергия, информация – это три стороны, с точки зрения которых, наука сумела посмотреть на бесконечно сложный и разнообразный мир. И степень его познания, практического овладения знаниями о веществе, энергии, информации не в последнюю очередь определяли достигнутый уровень развития и дальнейшие перспективы научно-технического прогресса человеческого общества.

В 1642 г. Блез Паскаль изобрел устройство, механически выполняющее сложение чисел, а в 1673 г. Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий выполнять четыре арифметических действия.

Впервые состав и назначение функциональных средств автоматической вычислительной машины определил английский математик Чарльз Бэббидж (1792 –1871). В 1833 был создан первый многоцелевой компьютер, названный “аналитической машиной”. Она могла оперировать с 50 десятичными знаками и сохраняла до 1000 чисел. Бэббидж предложил не только идею программного управления процессом вычислений, но и использование перфокарт для ввода и вывода данных.

Первым создателем автоматической вычислительной машины считается немецкий ученый Конрад Цузе. Работы им начаты в 1933 г., а через три года построена модель механической вычислительной машины, в которой использовалась двоичная система счисления, а в качестве элементной базы - реле.

Первым электронным компьютером можно назвать систему, созданную в 1942 году Джоном Атанасовым. В этом устройстве в качестве переключателей использовались вакуумные лампы.

В 1943 г. американец Говард Айкен с помощью работ Бэббиджа на основе электромеханических реле, смог построить на одном из предприятий фирмы IBMмашину под названием “Марк – 1” – первый программно-управляемый компьютер.

В 1943 г. под руководством Джона Мошли и Преспера Экерта были начаты работы по созданию первой электронной машины ENIAC(ElectronicNumericalIntegratorandComputer) на основе электронных ламп, выполнявшая 300 оп/с.

В 1945 г. математик Джон фон Нейман в одном из своих докладов сформулировал общие принципы функционирования универсальных вычислительных устройств. А именно компьютер должен иметь:

Арифметико-логическое устройство, выполняющее арифметические и логические операции;

Устройство управления, которое организует процесс выполнения программ;

Запоминающее устройство, или память для хранения программ и данных;

Внешние устройства для ввода-вывода информации.

Он также выдвинул идею о том, что программы можно изменять, не меняя аппаратного обеспечения.

Первая российская ЭВМ -МЭСМ (Малая Электронная Счетная Машина) была создана в 1951 г. под руководством С. А. Лебедева. Она была одной из первых в мире и первой на европейском континенте ЭВМ с хранимой в памяти программой.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

В вычислительной технике данные обычно различают от программ. Программа является набором инструкций, которые детализируют вычисление или задачу, которая производится компьютером. Данные — это всё отличное от программного кода.

С точки зрения программиста данные — это часть программы, совокупность значений определенных ячеек памяти, преобразование которых осуществляет код. С точки зрения компилятора, процессора, операционной системы, это совокупность ячеек памяти, обладающих определёнными свойствами (возможность чтения и записи (необязательно), невозможность исполнения).

Контроль за доступом к данным в современных компьютерах осуществляется аппаратно.

В соответствии с принципом фон Неймана, одна и та же область памяти может выступать как в качестве данных, так и в качестве исполнимого кода.

Содержание

Типы данных

Традиционно выделяют два типа данных — двоичные (бинарные) и текстовые.

Двоичные данные обрабатываются только специализированным программным обеспечением, знающим их структуру, все остальные программы передают данные без изменений.

Текстовые данные воспринимаются передающими системами как текст, записанный на каком-либо языке. Для них может осуществляться перекодировка (из кодировки отправляющей системы в кодировку принимающей), заменяться символы переноса строки, изменяться максимальная длина строки, изменяться количество пробелов в тексте.

Передача текстовых данных как бинарных приводит к необходимости изменять кодировку в прикладном программном обеспечении (это умеет большинство прикладного ПО, отображающего текст, получаемый из разных источников), передача бинарных данных как текстовых может привести к их необратимому повреждению.

Данные в ООП

Могут обрабатываться функциями объекта, которому принадлежат сами, либо функциями других объектов, имеющими для этого возможность.

Данные в языках разметки

Имеют различное отображение в зависимости от выбранного способа представления

Данные в XML

Метаданные

Множество данных может иметь надмножество, называемое метаданными

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Данные (в информатике)" в других словарях:

ДАННЫЕ — в информатике информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи … Большой Энциклопедический словарь

Данные в программировании — Данные (калька от лат. data) это представление фактов и идей в формализованном виде, пригодном для передачи и обработки в некотором информационном процессе. Содержание 1 В обществе 2 В информатике 2.1 Типы данных … Википедия

ДАННЫЕ — в информатике, информация, представленная в формализов. виде, что обеспечивает возможность её хранения, автоматич. обработки и передачи с помощью техн. средств (напр., ЭВМ) … Естествознание. Энциклопедический словарь

Всероссийская олимпиада школьников по информатике — и ИКТ Логотип XXIII Всероссийской олимпиады школьников по информатике Основные сведения Предмет информатика Зона охвата … Википедия

Знание (в информатике) — Знание форма существования и систематизации результатов познавательной деятельности человека. Выделяют различные виды знания: научное, обыденное (здравый смысл), интуитивное, религиозное и др. Обыденное знание служит основой ориентации человека в … Википедия

Информация — (Information) Информация это сведения о чем либо Понятие и виды информации, передача и обработка, поиск и хранение информации Содержание >>>>>>>>>>>> … Энциклопедия инвестора

Понятие информации является основополагающим понятием информатики. Любая деятельность человека представляет собой процесс сбора и переработки информации, принятия на ее основе решений и их выполнения. С появлением современных средств вычислительной техники информация стала выступать в качестве одного из важнейших ресурсов научно-технического прогресса.

Термин информация происходит от латинского informatio, что означает - разъяснение, изложение, осведомленность.

Понятие информации используется во всех сферах: науке, технике, культуре, социологии и повседневной жизни. Конкретное толкование элементов, связанных с понятием информации, зависит от метода конкретной науки, цели исследования или просто от наших представлений.

Основные понятия

В широком смысле информация - это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.

Информация - сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Более узкое определение дается в технике, где это понятие включает в себя все сведения, являющиеся объектом хранения, передачи и преобразования.

Сигнал (от латинского signum — знак) представляет собой любой процесс, несущий информацию.

Данные — это информация, представленная в формализованном виде и предназначенная для обработки ее техническими средствами, например, ЭВМ.

Формы представления информации

Различают две формы представления информации — непрерывную и дискретную (рис.1).

Поскольку носителями информации являются сигналы, то в качестве последних могут использоваться физические процессы различной природы. Например, процесс протекания электрического тока в цепи, процесс механического перемещения тела, процесс распространения света и т. д. Информация представляется (отражается) значением одного или нескольких параметров физического процесса (сигнала), либо их комбинацией.

Сигнал называется непрерывным , если его параметр в заданных пределах может принимать любые промежуточные значения.

Сигнал называется дискретным , если его параметр в заданных пределах может принимать отдельные фиксированные значения.

Следует различать непрерывность или дискретность сигнала по уровню и во времени.

Результат регистрации сигналов информатика рассматривает как данные.

Передача информации

Информацию можно сгруппировать по различным признакам, т. е. классифицировать по видам. Например, в зависимости от области возникновения информацию, отражающую процессы и явления неодушевленной природы, называют элементарной, отражающую процессы животного и растительного мира — биологической, человеческого общества — социальной.

Одной из важнейших разновидностей информации является информация экономическая. Ее отличительная черта - связь с процессами управления коллективами людей, организацией. Экономическая информация сопровождает процессы производства, распределения, обмена и потребления материальных благ и услуг.

Экономическая информация - совокупность сведений, отражающих социально-экономические процессы и служащих для управления этими процессами и коллективами людей в производственной и непроизводственной сфере.

Для потребителя информации очень важной характеристикой является ее адекватность.

Адекватность информации - это определенный уровень соответствия создаваемого с помощью полученной информации образа реальному объекту, процессу, явлению и т.п.

В реальной жизни вряд ли возможна ситуация, когда вы сможете рассчитывать на полную адекватность информации. Всегда присутствует некоторая степень неопределенности. От степени адекватности информации реальному состоянию объекта или процесса зависит правильность принятия решений человеком.

1. Понятие информации. Информационные процессы. Непрерывная и дискретная формы представления информации. Количество и единицы измерения информации. ЭВМ как универсальное средство обработки информации.

Понятие информации предполагает наличие материального носителя информации, источника информации, передатчика информации, приемника и канала связи между источником и приемником. Понятие информации используется во всех сферах: науке, технике, культуре, социологии и повседневной жизни. Конкретное толкование элементов, связанных с понятием информации, зависит от метода конкретной науки, цели исследования или просто от наших представлений.

Термин «информация» происходит от латинского informatio — разъяснение, изложение, осведомленность. Информация — общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, обмен сигналами в животном и растительном мире. Более узкое определение дается в технике, где это понятие включает в себя все сведения, являющиеся объектом хранения, передачи и преобразования.

Сигнал (от латинского signum — знак) представляет собой любой процесс, несущий информацию.

Данные — это информация, представленная в формализованном виде и предназначенная для обработки ее техническими средствами, например, ЭВМ.

Рис. 1. Схема передачи информации

Человеку свойственно субъективное восприятие информации через некоторый набор ее свойств: важность, достоверность, своевременность, доступность и т.д.

По способу передачи и восприятия различают следующие виды информации: визуальную - передаваемую видимыми образами и символами, аудиальную - звуками, тактильную - ощущениями, органолептическую - запахами и вкусом, машинную - выдаваемую и воспринимаемую средствами вычислительной техники, и т. д.

Процессы, связанные с поиском, хранением, передачей, обработкой и использованием информации, называются информационными процессами.

Информационные процессы всегда играли важную роль в науке, технике и жизни общества. В ходе эволюции человечества просматривается устойчивая тенденция к автоматизации этих процессов, хотя их внутреннее содержание по существу осталось неизменным.

Основные информационные процессы:

Сбор информации — это деятельность субъекта, в ходе которой он получает сведения об интересующем его объекте. Сбор информации может производиться или человеком, или с помощью технических средств и систем — аппаратно. Например, пользователь может получить информацию о движении поездов или самолетов сам, изучив расписание, или же от другого человека непосредственно, либо через какие-то документы, составленные этим человеком, или с помощью технических средств (автоматической справки, телефона и т. д.). Задача сбора информации не может быть решена в отрыве от других задач, — в частности, задачи обмена информацией (передачи).

Накопление информации — это процесс формирования исходного, несистематизированного массива информации. Среди записанных сигналов могут быть такие, которые отражают ценную или часто используемую информацию.

Хранение информации — это процесс поддержания исходной информации в виде, обеспечивающем выдачу данных по запросам конечных пользователей в установленные сроки. Способ хранения информации зависит от ее носителя (книга- библиотека, картина- музей, фотография- альбом). ЭВМ предназначен для компактного хранения информации с возможностью быстрого доступа к ней. Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации.

Обработка информации — это упорядоченный процесс ее преобразования в соответствии с алгоритмом решения задачи. После решения задачи обработки информации результат должен быть выдан конечным пользователям в требуемом виде. Эта операция реализуется в ходе решения задачи выдачи информации. Выдача информации, как правило, производится с помощью внешних устройств ЭВМ в виде текстов, таблиц, графиков и пр.

Деятельность людей всегда связана с передачей информации.

В процессе передачи информация может теряться и искажаться: искажение звука в телефоне, атмосферные помехи в радио, и тд. Эти помехи, или, как их называют специалисты, шумы, искажают информацию. К счастью, существует наука, разрабатывающая способы защиты информации - криптология.

Непрерывная и дискретная формы представления информации.

Различают две формы представления информации — непрерывную и дискретную .

Следует различать непрерывность или дискретность сигнала по уровню и во времени. На рисунке в виде графиков изображены:

а) непрерывный по уровню и во времени сигнал Хнн;

6) дискретный по уровню и непрерывный во времени сигнал Хдн;

в) непрерывный по уровню и дискретный во времени сигнал Хнд ;

г) дискретный по уровню и во времени сигнал Хдд.

Количество и единицы измерения информации.

Приведенные рассуждения показывают, что между понятиями информация, неопределенность и возможность выбора существует тесная связь. Так, любая неопределенность предполагает возможность выбора, а любая информация, уменьшая неопределенность, уменьшает и возможность выбора. При полной информации выбора нет. Частичная информация уменьшает число вариантов выбора, сокращая тем самым неопределенность.

Определить понятие “количество информации” довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к “объемному” подходу.

Подход к информации как мере уменьшения неопределенности знаний позволяет количественно измерять информацию, что чрезвычайно важно для информатики. Рассмотрим вопрос об определении количества информации более подробно на конкретных примерах.

Пусть у нас имеется монета, которую мы бросаем на ровную поверхность. С равной вероятностью произойдет одно из двух возможных событий — монета окажется в одном из двух положений: «орел» или «решка».

Можно говорить, что события равновероятны, если при возрастающем числе опытов количества выпадений «орла» и «решки» постепенно сближаются. Например, если мы бросим монету 10 раз, то «орел» может выпасть 7 раз, а решка — 3 раза, если бросим монету 100 раз, то «орел» может выпасть 60 раз, а «решка» — 40 раз, если бросим монету 1000 раз, то «орел» может выпасть 520 раз, а «решка» — 480 и так далее.

В итоге при очень большой серии опытов количества выпадений «орла» и «решки» практически сравняются.

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digiTs – двоичные цифры). Создатели компьютеров отдают предпочтение именно двоичной системе счисления, потому что в техническом устройстве наиболее просто реализовать два противоположных физических состояния. Например: некоторый физический элемент, имеющий два различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т.п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).

Группа из 8 битов информации называется байтом. Если бит — минимальная единица информации, то байт ее основная единица. Существуют производные единицы информации: килобайт (кбайт, кб), мегабайт (Мбайт, Мб) и гигабайт (Гбайт, Гб).

1 кб = 1024 байта = 210 (1024) байтов. 1 Мб = 1024 кбайта = 220 (1024 х 1024) байтов.

1 Гб = 1024 Мбайта = 230 (1024 х 1024 х 1024) байтов.

Эти единицы чаще всего используют для указания объема памяти ЭВМ.

ЭВМ как универсальное средство обработки информации.

При рассмотрении ЭВМ как средства обработки информации важную роль играют понятие архитектуры, классификация, структура и принципы функционирования, а также основные характеристики вычислительной техники.

Под архитектурой ЭВМ понимается совокупность общих принципов организации аппаратно-программных средств и их характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих классов задач.

Архитектура ЭВМ охватывает широкий круг проблем, связанных с построением комплекса аппаратных и программных средств и учитывающих множество факторов. Среди этих факторов важнейшими являются: стоимость, сфера применения, функциональные возможности, удобство эксплуатации, а одним из главных компонентов архитектуры являются аппаратные средства.

1. Понятие архитектуры ЭВМ

Большие ЭВМ (универсальные ЭВМ общего назначения). Основное назначение — выполнение работ, связанных с обработкой и хранением больших объемов информации, проведением сложных расчетов и исследований в ходе решения вычислительных и информационно-логических задач. Большие ЭВМ обеспечивают устойчивость вычислительного процесса, безопасность информации и низкую стоимость ее обработки. Такими машинами, как правило, оснащаются вычислительные центры, используемые совместно несколькими организациями. К ним относятся большинство моделей фирмы IBM (семейства 360, 370, 390) и их отечественные аналоги ЕС ЭВМ.

Т.к. производительность больших ЭВМ порой оказывается недостаточной для ряда приложений, например, таких как прогнозирование метеообстановки, ядерная энергетика, оборона и т. д., были созданы супер-ЭВМ. Они обладают способностью работать одновременно с большим количеством пользователей, создавать гигантские базы данных и обеспечивать эффективную вычислительную работу. Такие машины обладают колоссальным быстродействием в миллиарды операций в секунду, основанном на выполнении параллельных вычислений и использовании многоуровневой иерархической структуры ЗУ. Но требуют для своего размещения специальных помещений и крайне сложны в эксплуатации. Стоимость отдельной ЭВМ такого класса достигает десятков миллионов долларов. Представители этого класса ЭВМ — компьютеры фирм Cray Research, Control Data Corporation (CDC) и отечественные супер-ЭВМ семейства Эльбрус.

Средние ЭВМ обладают несколько меньшими возможностями, чем большие ЭВМ, но зато им присуща и более низкая стоимость. Они предназначены для использования всюду, где приходится постоянно обрабатывать достаточно большие объемы информации с приемлемыми временными затратами. В настоящее время трудно определить четкую грань между средними ЭВМ и большими с одной стороны и малыми — с другой. Примеры средних ЭВМ - компьютеры фирмы IBM (International Business Machinery), DEC (Digital Equipment Corporation), Hewlett Packard, СОМРАРЕХ и др .

Малые ЭВМ составляют самый многочисленный и быстроразвивающийся класс ЭВМ. Их популярность объясняется малыми размерами, низкой стоимостью (по сравнению с большими и средними ЭВМ) и универсальными возможностями. Класс мини-ЭВМ появился в 60-е годы (12-разрядная ЭВМ PD5-5 фирмы DEC). Для них характерно представление данных с узким диапазоном значений (машинное слово — 2 байта), использование принципа магистральности в архитектуре и более простое взаимодействие человека и ЭВМ. Такие машины широко применяются для управления сложными видами оборудования, создания систем автоматизированного проектирования и гибких производственных систем. К мини-ЭВМ относятся машины серии PDP (затем VAX) фирмы DEC.

Микро-ЭВМ. Его определяющим признаком является наличие одного или нескольких микропроцессоров. Создание микропроцессора не только изменило центральную часть ЭВМ, но и привело к необходимости разработки малогабаритных устройств ее периферийной части. Микро-ЭВМ, благодаря малым размерам, высокой производительности, повышенной надежности и небольшой стоимости нашли широкое применение во всех сферах народного хозяйства и оборонного комплекса. С появлением микропроцессоров и микро-ЭВМ становится возможным создание так называемых интеллектуальных терминалов, выполняющих сложные процедуры предварительной обработки информации.

Успехи в развитии микропроцессоров и микро-ЭВМ привели к появлению персональных ЭВМ (ПЭВМ), предназначенных для индивидуального обслуживания пользователя и ориентированных на решение различных задач неспециалистами в области вычислительной техники. Все оборудование персональной ЭВМ размещается в пределах стола. Они широко используются как для поддержки различных видов профессиональной деятельности (инженерной, административной, производственной, литературной, финансовой и др.), так и в быту, например для обучения и досуга. Он позволяет эффективно выполнять научно-технические и финансово-экономические расчеты, организовывать базы данных, подготавливать и редактировать документы и любые другие тексты, вести делопроизводство, обрабатывать графическую информацию и т. д. На основе ПЭВМ создаются автоматизированные рабочие места (АРМ) для представителей разных профессий (конструкторов, технологов, административного аппарата и др.).

Рынок персональных и микро-ЭВМ непрерывно расширяется за счет поставок ведущих мировых фирм: IBM, DEC, Hewlett Packard, Apple (США), COMPARE/, Siemens (Германия), ICL (Англия) и др.

К основным характеристикам вычислительной техники относятся :

1. Быстродействие ЭВМ рассматривается в двух аспектах. Первое: количество элементарных операций, выполняемых центральным процессором в секунду (сложение, пересылка, сравнение и т. д.). Второе: время, затрачиваемое на поиск необходимой информации в памяти. В зависимости от области применения выпускаются ЭВМ с быстродействием от нескольких сотен тысяч до миллиардов операций в секунду. Но быстродействие не является величиной постоянной. Различают: пиковое быстродействие, определяемое тактовой частотой процессора без учета обращения к оперативной памяти; номинальное быстродействие, определяемое с учетом времени обращения к оперативной памяти; системное быстродействие, определяемое с учетом системных издержек на организацию вычислительного процесса; эксплуатационное, определяемое с учетом характера решаемых задач (состава операций или их «смеси»).

2. Производительность связана с ее архитектурой и разновидностями решаемых задач.

3. Емкость, или объем, памяти определяется максимальным количеством информации, которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограниченна.

4. Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов в самых разнообразных приложениях.

5. Система команд — это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна иметь команда для ее распознания. Количество основных разновидностей команд невелико. С их помощью ЭВМ способны выполнять операции сложения, вычитания, умножения, деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняется модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации).

6. Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины.

7. Надежность ЭВМ — это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

• вероятность безотказной работы за определенное время при данных условиях эксплуатации;

• наработка ЭВМ на отказ;

• среднее время восстановления машины и др.

Важное значение имеют и другие характеристики вычислительной техники, например: универсальность, программная совместимость, вес, габариты, энергопотребление и др. Они принимаются во внимание при оценивании конкретных сфер применения ЭВМ.

Читайте также: