К каким годам фактически относится начало фазы компьютерной революции породившей экспертные системы

Обновлено: 05.07.2024

В начале 80-х годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Основным назначением ЭС является разработка программных средств, которые при решении задач, трудных для человека, получают результаты, не уступающие по качеству и эффективности решения, решениям, получаемым человеком-экспертом. ЭС используются для решения так называемых неформализованных задач, общим для которых является то, что:

задачи не могут быть заданы в числовой форме;

цели нельзя выразить в терминах точно определенной целевой функции;

не существует алгоритмического решения задачи;

если алгоритмическое решение есть, то его нельзя использовать из-за ограниченности ресурсов (время, память).

Кроме того, неформализованные задачи обладают ошибочностью, неполнотой, неоднозначностью и противоречивостью как исходных данных, так и знаний о решаемой задаче.

Экспертная система - это программное средство, использующее экспертные знания для обеспечения высокоэффективного решения неформализованных задач в узкой предметной области.

Основу ЭС составляет база знаний (БЗ) о предметной области, которая накапливается в процессе построения и эксплуатации ЭС Накопление и организация знаний - важнейшее свойство всех ЭС.

Знания являются явными и доступными, что отличает ЭС от традиционных программ, и определяет их основные свойства, такие, как:

1) Применение для решения проблем высококачественного опыта. Который представляет уровень мышления наиболее квалифицированных экспертов в данной области, что ведет к решениям творческим, точным и эффективным.

2) Наличие прогностических возможностей, при которых ЭС выдает ответы не только для конкретной ситуации, но и показывает, как изменяются эти ответы в новых ситуациях, с возможностью подробного объяснения каким образом новая ситуация привела к изменениям.

3) Обеспечение такого нового качества, как институциональная память, за счет входящей в состав ЭС базы знаний, которая разработана в ходе взаимодействий со специалистами организации, и представляет собой текущую политику этой группы людей. Этот набор знаний становится сводом квалифицированных мнений и постоянно обновляемым справочником наилучших стратегий и методов, используемых персоналом. Ведущие специалисты уходят, но их опыт остается.

4) Возможность использования ЭС для обучения и тренировки руководящих работников, обеспечивая новых служащих обширным багажом опыта и стратегий, по которым можно изучать рекомендуемую политику и методы.

2. Состав и взаимодействие участников построения и эксплуатации экспертных систем

Познакомившись с тем, что такое экспертные системы и каковы их основные характеристики, попробуем теперь ответить на вопрос: "Кто участвует в построении и эксплуатации ЭС? ".

К числу основных участников следует отнести саму экспертную систему, экспертов, инженеров знаний, средства построения ЭС и пользователей. Их основные роли и взаимоотношение приведены на рис.2.

Экспертная система - это программное средство, использующее знания экспертов, для высокоэффективного решения задач в интересующей пользователя предметной области. Она называется системой, а не просто программой, так как содержит базу знаний, решатель проблемы и компоненту поддержки. Последняя из них помогает пользователю взаимодействовать с основной программой.

Эксперт - это человек, способный ясно выражать свои мысли и пользующийся репутацией специалиста, умеющего находить правильные решения проблем в конкретной предметной области.

Эксперт использует свои приемы и ухищрения, чтобы сделать поиск решения более эффективным, и ЭС моделирует все его стратегии.

Инженер знаний - человек, как правило, имеющий познания в информатике и искусственном интеллекте и знающий, как надо строить ЭС.

Инженер знаний опрашивает экспертов, организует знания, решает, каким образом они должны быть представлены в ЭС, и может помочь программисту в написании программ.

Средство построения ЭС - это программное средство, используемое инженером знаний или программистом для построения ЭС.

Этот инструмент отличается от обычных языков программирования тем, что обеспечивает удобные способы представления сложных высокоуровневых понятий.

Пользователь - это человек, который использует уже построенную ЭС. Так, например, пользователем может быть юрист, использующий ее для квалификации конкретного случая; студент, которому ЭС помогает изучать информатику и т. д. Термин пользователь несколько неоднозначен. Обычно он обозначает конечного пользователя. Однако из рис.2 следует, что пользователем может быть:

создатель инструмента, отлаживающий средство построения ЭС;

инженер знаний, уточняющий существующие в ЭС знания,

эксперт, добавляющий в систему новые знания,

клерк, заносящий в систему текущую информацию.

Важно различать инструмент, который используется для построения ЭС, и саму ЭС. Инструмент построения ЭС включает как язык, используемый для доступа к знаниям, содержащимся в системе, и их представления, так и поддерживающие средства - программы, которые помогают пользователям взаимодействовать с компонентой экспертной системы, решающей проблему.

3. Преимущества использования экспертных систем

Возникает вопрос: "Зачем разрабатывать экспертные системы? И не лучше ли обратиться к человеческому опыту, как это было в прошлом?". Отметим лишь основные преимущества, которые дает использование ЭС.

Преимуществами и положительными качествами искусственной компетенции являются:

1. Ее постоянство. Человеческая компетенция ослабевает со временем. Перерыв в деятельности человека-эксперта может серьезно отразиться на его профессиональных качествах.

2. Легкость передачи или воспроизведения. Передача знаний от одного человека другому - долгий и дорогой процесс. Передача искусственной информации - это простой процесс копирования программы или файла данных.

3. Устойчивость и воспроизводимость результатов. Эксперт-человек может принимать в тождественных ситуациях разные решения из-за эмоциональных факторов. Результаты ЭС - стабильны.

4. Стоимость. Эксперты, особенно высококвалифицированные обходятся очень дорого. ЭС, наоборот, сравнительно недороги. Их разработка дорога, но они дешевы в эксплуатации.

Вместе с тем разработка ЭС не позволяет полностью отказаться от эксперта-человека. Хотя ЭС хорошо справляется со своей работой, тем не менее в определенных областях человеческая компетенция явно превосходит искусственную. Однако и в этих случаях ЭС может позволить отказаться от услуг высококвалифицированного эксперта, оставив эксперта средней квалификации, используя при этом ЭС для усиления и расширения его профессиональных возможностей.

4. Особенности построения и организации экспертных систем

Основой любой ЭС является совокупность знаний, структурированная в целях упрощения процесса принятия решения. Для специалистов в области искусственного интеллекта термин знания означает информацию, которая необходима программе, чтобы она вела себя "интеллектуально". Эта информация принимает форму фактов и правил. Факты и правила в ЭС не всегда либо истинны, либо ложные. Иногда существует некоторая степень неуверенности в достоверности факта или точности правила. Если это сомнение выражено явно, то оно называется "коэффициентом доверия".

Коэффициент доверия - это число, которое означает вероятность или степень уверенности, с которой можно считать данный факт или правило достоверным или справедливым.

Многие правила ЭС являются эвристиками, то есть эмпирическими правилами или упрощениями, которые эффективно ограничивают поиск решения. ЭС используют эвристики, так как задачи, которые она решает, трудны, не до конца понятны, не поддаются строгому математическому анализу или алгоритмическому решению. Алгоритмический метод гарантирует корректное или оптимальное решение задачи, тогда как эвристический метод дает приемлемое решение в большинстве случаев.

Знания в ЭС организованы так, чтобы знания о предметной области отделить от других типов знаний системы, таких как общие или оптимальное решение задачи, тогда как эвристический метод дает приемлемое решение в большинстве случаев.

Выделенные знания о предметной области называются базой знаний, тогда как общие знания о нахождении решений задач называются механизмом вывода.

Программные средства, которые работают со знаниями, организованными таким образом, называются системами, основанными на знаниях

БЗ содержит факты (данные) и правила (или другие представления знаний), использующие эти факты как основу для принятия решений.

Механизм вывода содержит:

интерпретатор, определяющий как применять правила для вывода новых знаний на основе информации, хранящейся в БЗ.

Экспертные системы

Экспертные системы (ЭС, англ. expert system) — это компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предшественники экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например, определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определённой области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Похожие действия выполняет такой программный инструмент как «Мастер» (англ. Wizard). Мастера применяются как в системных программах так и в прикладных для упрощения интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от экспертных систем — отсутствие базы знаний — все действия жёстко запрограммированы. Это просто набор форм для заполнения пользователем.

Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).

Сейчас экспертные системы в различных отраслях набирают все большую популярность. Юристы, экономисты, hr-менеджеры и врачи с настороженностью следят за разработками в данной сфере.

Фактически, Экспертная система — это симуляция действий эксперта при решении определенной задачи.

Основные характеристики экспертных систем:

— Ядро, которое представлено базой знаний;

— накопление и организация знаний;

— формализованный высококачественный опыт;

— возможности к прогнозированию.

Доктор, диагностирующий заболевания и назначающий курс лечения, делает это хорошо при наличии хорошего специализированного образования и накопленного опыта в медицине.

Поэтому качество экспертной системы сводится к качеству формализованных знаний и унификацией используемого опыта.

В настоящий момент мало принимать эффективные решения, крайне важна скорость их принятия.

Экспертная система способна обрабатывать огромный объем знаний за доли секунд, что порой может спасти жизнь человека либо компании.

Однако, надо понимать, что экспертная система оперирует базой знаний, которая достаточно ограничена, в то время как человек может пользоваться большим спектром органов чувств, символьной, графической и др. видами информации.

У экспертных систем существуют границы возможностей и пока данные системы ведут себя не совсем надежно на границах применимости либо в нестандартных ситуациях.

Однако, экспертные системы пытаются разрабатывать со способностью к обучению и способностью к аргументации методов принятия решения.

Этапы разработки экспертных систем

1. Идентификация области применения и круга решаемых задач;

2. Получение знаний;

3. Содержательный анализ проблемной области, определяются методы решения задач;

4. Формализация — перевод в формализованный язык, код;

5. Реализация — прототип системы.

В заключение стоит заметить, что экспертные системы уже эффективно используются во многих отраслях, и сейчас многие корпорации мира занимаются разработкой, тестированием и внедрением аналогичных систем в более сложных сферах нашей профессиональной жизни.

Развитие экспертных систем началось чуть ли не с началом эры искусственного интеллекта, и разработка этого класса систем была вторым существенным прорывом в исследованиях. Экспертные системы основаны на трёх ранее рассмотренных подходах — представлении знаний, символьных вычислениях и обработке естественного языка. Когда идея экспертных систем только родилась у пионеров искусственного интеллекта, казалось, что достаточно посадить эксперта, который тщательно формализует свою проблемную область на выбранном формализме представления знаний, и искусственная интеллектуальная система сможет самостоятельно вырабатывать решения в любых ситуациях этой проблемной области. Однако этот наивный подход столкнулся с серьёзными проблемами самого разного характера.

В первую очередь возникли проблемы организационного характера, если так можно выразиться. Хотя в целом они не являются непреодолимыми, разработка экспертных систем серьёзно «провисла». Дело в том, что эксперты не стремятся делиться своим знанием, особенно в целях его неограниченного распространения и применения. Ведь если экспертная система будет решать все задачи за человека в заданной проблемной области, то зачем нужен эксперт? Другими словами, это вполне обоснованное опасение специалиста в том, что если он поделится своим знанием, то тем самым «размоет» свою полезность и востребованность. Тем не менее, вопрос вполне решаем с учётом того, что большая часть действительно нужных знаний изложена в письменных источниках — статьях и книгах. И их можно использовать для построения баз знаний интеллектуальных систем.

Тем не менее, в конечном итоге даже нашлись эксперты, которые были крайне заинтересованы в создании подобных систем. И они начали работать над базами данных. И тут-то обнаружился следующий проблемный аспект — экспертные знания, в общем-то, не так просто формализовать. Их прямой перевод на язык формальной логики возможен только в очень ограниченных случаях, а в большей части экспертные знания представляют собой переплетение так называемых «НЕ-факторов» — они неполны, часто противоречивы (особенно если рассматривать знания нескольких экспертов), неточны в силу неточности измерений и фундаментальной неопределённости реального мира. Часто знания выражаются на нечётком естественном языке, и для решения повседневных задач этого достаточно, но совершенно недостаточно для формализации в виде баз знаний. Даже появление профессии когнитолога или инженера по знаниям не помогло — пришлось развивать математический аппарат. В итоге и эта проблема была побеждена, и сегодня существует большое количество формализмов и методов обработки знаний с НЕ-факторами.

В итоге, надо отметить, что именно проблемы и сложно решаемые вопросы при построении экспертных систем сделали основной вклад в явление, которое потом назвали «зимой искусственного интеллекта». Постепенно весь ажиотаж и смелые надежды в духе «сейчас как опишем все знания всех экспертов, и будет система самой умной» сошли на нет, и многие направления исследований и проекты в этой области были свёрнуты. Однако, конечно же, отдельные энтузиасты продолжили развитие методологии инженерии знаний, так что сегодня эта область постепенно возрождается.

Однако перед тем как перейти к подробному рассмотрению новых методик и технологий, которые пришли на смену экспертным системам, необходимо чуть более детально посмотреть, что же находится «под капотом» у традиционных экспертных систем. Это будет полезно для понимания того, как должен быть устроен символьный искусственный интеллект (или подсистема верхнего уровня в гибридном искусственном интеллекте). Итак, вот общая архитектура экспертной системы:

Кратко опишем компоненты экспертных систем, представленных на этой диаграмме:

1. База знаний содержит знания экспертной системы о проблемной области. В режиме штатной работы обычно база знаний не изменяется, а потому информация из неё берётся машиной вывода в режиме «только чтение». Изменение базы знаний осуществляется в режиме обучения системы экспертом. Однако в последнее время наибольший интерес представляют экспертные системы, которые имеют возможности самообучения в процессе работы с пользователями.

2. Рабочая память содержит факты, которые вводятся пользователем при помощи интерфейса (либо как-то иначе добываются экспертной системой из внешнего мира — например, с сенсоров). При помощи фактов машина вывода активирует знания из базы знаний и выводит новые факты, которые так же помещаются в рабочую память.

3. Машина вывода — это ядро экспертной системы. Она получает знания из Базы знаний и факты из рабочей памяти, а также запросы пользователя через интерфейс взаимодействия с ним. Далее происходит цикличная работа с рабочей памятью и, при необходимости, с пользователем, когда на основе имеющихся фактов и знаний осуществляется вывод новых фактов, их уточнение у пользователя или запрос у него дополнительных фактов. В конечном итоге машина вывода получает результаты вывода и выдаёт их пользователю через интерфейс с ним.

4. Наконец, интерфейс пользователя представляет собой тот механизм, при помощи которого пользователь взаимодействует с экспертной системой. В самом начале развития этого направления планировалось, что интерфейс пользователя будет естественно-языковым, однако с анализом естественного языка возникли существенные проблемы, а потому чаще всего использовался формализованный ввод (иногда даже похожий на естественно-языковой). Сегодня тема естественно-языкового ввода возрождается в связи с развитием методов анализа естественного языка и появлением большого количества мессенджеров, имеющих возможность использования чат-ботов в качестве универсального метода языкового доступа к системам.

Экспертная система может быть интегрированной в информационную систему более высокого уровня, тогда, как уже было указано выше, в её рабочую память информация может поступать не только посредством интерфейса пользователя, но и из других систем или, например, с сенсоров, если экспертная система используется при управлении каким-нибудь технологическим процессом. С другой стороны, интегрированная экспертная система может выдавать свои заключения не только конечному пользователю, но и другим системам или даже исполнительным устройствам. Другими словами, сегодня экспертные системы могут использоваться как полноценные и законченные блоки для создания комплексных систем управления с возможностью взаимодействия не только со специально обученными пользователями, но и с другими системами.

Это позволяет нарисовать более целостную диаграмму того, что представляет собой экспертная система в своём окружении. С учётом вышесказанного получается полноценная обобщённая кибернетическая система, взаимодействующая со средой. И такое взаимодействие осуществляется в парадигме символьных вычислений.

Интересным является вопрос — в составе каких более крупных систем могут включаться экспертные системы? Самый тривиальный ответ: «В составе систем автоматического управления и автоматизированных систем управления». Это традиционные области использования экспертных систем, особенно в хорошо формализуемых проблемных областях. Например, системы автоматического управления технологическими процессами вполне могут управляться при помощи достаточно небольших экспертных систем, базы знаний которых содержат несколько сотен продукций.

Экспертная система (ЭС, Expert system) — предиктивная система, включающая в себя знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений. Экспертная система включает в себя большое число структурных составляющих меньшего размера.

Содержание



Экспертные системы представляют собой прямой пример того, как наука может быть полезна для бизнеса.

Развитие ЭС

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы» (ЭС). Целью исследований в этом новом направлении была разработка программ, которые при решении задач, сложных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Для обозначения этой дисциплины также часто используют термин «инженерия знаний», введенный Е.Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». На протяжении 1960—1985 гг. успехи в деле освоения искусственного интеллекта (ИИ) касались в основном исследовательских разработок, которые демонстрировали пригодность ИИ для практического использования. В 1988—1990 гг. экспертные системы стали активно применяться в коммерческих приложениях. На заре появления используемые для их создания языки программирования, технологии разработки приложений и используемого делали интеграцию ЭС с традиционными программными системами довольно сложной, а порой даже невыполнимой задачей. Однако в настоящее время средства разработки ЭС используются в полном соответствии с современными технологическими тенденциями традиционного программирования, что решает проблемы, возникающие при создании составных приложений.

Место в ИТ-инфрастрктуре

Назначение


Само название «Экспертные системы» подразумевает возможность замены эксперта-человека программным решением. Это позволяет предприятиям сокращать затраты на оплату труда специалистов, а самим специалистам обращаться при решении любых вопросов в рамках своей деятельности непосредственно к программе. Такие возможности сокращают время решения проблемы и позволяют молодым специалистам обучаться прямо на своем рабочем месте. Примером простейшей экспертной системы могут служить виртуальные «помощники» в пакетах ПО операционных систем компьютеров. Такие алгоритмы решения типовых вопросов избавляют разработчиков от излишней, непомерной и неоправданной нагрузки по общению с конечным пользователем.

Экспертные системы и системы искусственного интеллекта имеют основное отличие от систем обработки данных тем, что в них в основном используются символьный способ представления, символьный вывод и эвристический поиск решения. Экспертные системы предназначены для решения только сложных практических задач. По качеству и эффективности решения экспертные системы не должны уступать решениям эксперта-человека. Решения экспертных систем. могут быть объяснены пользователю на качественном уровне, то есть обладают прозрачностью. Прозрачность экспертных систем обеспечивается их способностью рассуждать о результатах своей работы и базах знаний. Важным свойством экспертных систем является и то, что они способны обучаться. ЭС решают задачи:

  • интерпретации
  • предсказаний
  • диагностики
  • планирования
  • конструирования
  • контроля
  • отладки
  • инструктажа
  • управления

Такие задачи возникают в самых разных областях научных, деловых и промышленных областях. Программные средства, основанные на технологии экспертных систем, получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

  • существенно расширяют круг практически значимых задач, решение которых приносит значительный экономический эффект
  • являются важнейшим средством сокращения длительности и, следовательно, высокой стоимости разработки сложных приложений
  • объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет обеспечения динамичной модификации приложений пользователем, а не программистом, большей «прозрачности» приложения, лучшей графики, интерфейса и взаимодействия.

Неформализованные задачи

Особое внимание следует уделить неформализованным задачам, потому что именно для их решения и создавались экспертные системы. Неформализованные задачи обычно обладают следующими свойствами:

  • ошибочность, неоднозначность, неполнота и противоречивость исходных данных
  • ошибочность, неоднозначность, неполнота и противоречивость знаний о проблемной области и решаемой задаче
  • большая размерность пространства решения, то есть перебор при поиске решения может быть очень большим
  • динамически изменяющиеся данные и знания

Неформализованные задачи представляют большой и очень важный класс задач. Задачи такого плана являются наиболее массовым классом задач, решаемых ЭВМ.

Архитектура клиент-сервер

Существуют инструментальные средства искусственного интеллекта, поддерживающие распределенные вычисления по архитектуре клиент-сервер. Это предоставляет следующие преимущества:

  • снижение стоимости оборудования, используемого в приложениях
  • возможность децентрализовать приложения
  • повышение надежности и общей производительности
  • сокращение количества информации, пересылаемой между оборудованием

Преимущества

Существует ряд преимуществ экспертных систем как перед человеком-оператором, так и перед обычными алгоритмическими базами данных:

  • интегрируемость. Существуют инструментальные средства, легко входящие в состав других информационных технологий и средств
  • открытость и переносимость: у них нет предубеждений и они устойчивы к различным помехам;
  • отсутствие поспешных выводов;
  • выдача оптимального решения
  • неограниченные размеры базы знаний.
  • постоянное хранение данных: эксперт может что-то забыть, машина — никогда.

Перспективы развития

По мнению ведущих специалистов в области программирования, в недалекой перспективе ЭС будут играть важную роль в таких сферах, как:

Читайте также: