Как называют компьютер выполняющий функции главного имеющий более мощные

Обновлено: 03.07.2024

Суперкомпьютер – это компьютер, способный производить сотни миллиардов операций за 1 с. Такие большие объёмы вычислений нужны для решения задач в аэродинамике, метеорологии, физике высоких энергий, геофизике. Суперкомпьютеры так же нашли своё применение в финансовой сфере при обработке больших объёмов сделок на биржах. Сверхвысокое быстродействие суперкомпьютера обеспечивается параллельной работой множества микропроцессоров.
Суперкомпьютеры – это не выдумка. Хотя суперкомпьютеры не используются обычными людьми в повседневной жизни, их влияние, как на все человечество, так и на каждого из нас очень заметно. Вернее, стало бы заметно, если бы они в один миг исчезли или сломались.

Суперкомпьютеры – это современные вычислительные машины с высокой мощностью и скоростью обработки данных. Они не выпускаются большими партиями и не продаются в магазинах. Каждый суперкомпьютер уникален, так как разрабатывается и изготавливается под конкретный заказ, для решения определенной задачи. Суперкомпьютеры могут быть как микроскопически малы, так и занимать несколько комнат или даже этажей, все зависит от функций и задач, которые будет решать электронная техника.
Изобретателем суперкомпьютера является американский инженер С.Крей. В 1972 году он открыл свою фирму под названием «Крей Ресерч Инкорпорейтед». Эта фирма занималась разработкой самых высокоскоростных компьютеров в мире. Изобретением стали мультипроцессорные компьютеры, способные осуществлять одновременную обработку данных. В 1976 году был выпущен первый суперкомпьютер под названием «Крей-1», который мог осуществлять 240 млн. вычислений в одну секунду.
Он применялся для научных исследований, таких, например, как моделирование сложных физических явлений. Такие компьютеры приобретались правительственными учреждениями и университетскими лабораториями. Следующие модели Крея – «Крей 1-М» и «Крей X-МР» обладали ещё большим быстродействием.
В 1985 г. появился «Крей-2», который мог выполнить 1 200 млн. операций за 1 с. Представленный в 1988 г. «Крей Y-MP» обладал быстродействием 2 670 млн. операций за 1 с.
Позднее были созданы суперкомпьютеры с ещё большим быстродействием.

Первым отечественным суперкомпьютером является БЭСМ-6, выпущенный в 1967 году под руководством, гениального инженера Сергея Алексеевича Лебедева. Данная машина, по формальной производительности сопоставимая с CDC 6600, реально намного превосходила своего иностранного конкурента. В данном компьютере было заложено так много инновационных решений, что её производство продолжалось на протяжении двадцати лет! Попытка американских инженеров создать что-либо совершеннее БЭСМ-6, носившая имя ILLIAC-IV, окончилась неудачей: данный суперкомпьютер оказалась дороже, сложнее и медленнее "русской машины". БЭСМ-6 не была единственным советским суперкомпьютером. В последние годы своей жизни Лебедев руководил работами по созданию многопроцессорного комплекса "Эльбрус", однако в 1974 году смерть помешала ему увидеть результаты своих трудов. Работы над первым компьютером серии "Эльбрус" завершились в 1979 году, и, хотя по производительности он, равно как и другие компьютеры серии, отставали от зарубежных аналогов, в его процессоре впервые была применена технология суперскалярности. Супер скалярная архитектура, то есть технология параллельного выполнения нескольких команд, независимых друг от друга, вскоре была реализована в большинстве процессоров для персональных компьютеров; таким образом, в процессорах Intel и AMD есть частичка нашего, русского, инженерного знания.

Но, перестройка, раскол Советского Союза и последовавшие за ним события крайне негативно отразились на отечественной суперкомпьютерной промышленности. Прощальным приветом отечественных инженеров-электронщиков можно считать появившийся в 1990-х процессор Elbrus 2000 (E2K) , который так и не смог выйти на рынок: сначала помешал кризис, ну а затем, когда казалось, что "вот уже чуть-чуть", команду "Эльбруса" на корню купила Intel. На данный момент все существующие в России суперкомпьютеры либо зарубежного производства, либо основаны на зарубежных комплектующих и технологиях.
Оправившись от кризиса, индустрия производства суперкомпьютеров принялась за штурм новых высот. В 1997 году был создансуперкомпьютер ASCI RED, обладавший неслыханной тогда производительностью в 1,34 ТФЛОПС. Однако самое интересное, что данный компьютер был построен на базе почти что десяти тысяч процессоров Pentium II , тех самых, которых можно было спокойно найти в любом топовом ПК тех лет. Подобная система объединения вычислительных мощностей относительно недорогих процессоров получила название MassivelyParallelProcessing, или просто MPP. Преимущество MPP-систем - в их гибкости: незагруженные процессорные блоки можно легко отключить, а по возможности - включить заново, а вдобавок подключить дополнительные. На данный момент большинство суперкомпьютеров было построено именно на базе данной технологии.

Шло время, и производители выпускали всё более и более новыесуперкомпьютеры, которые задавали новые стандарты производительности. Символический барьер в один ПФЛОПС (читается "пентафлопс"; 1 ПФЛОПС = 1000 ТФЛОПС) был преодолён в 2008 году компьютером Roadrunner от IBM. Характеристики данной машины, мягко говоря, шокируют: почти 100 Тб оперативной памяти, около 20 000 процессоров. Удивляет и то, что всё это работает под управлением Linux-систем RedHat и Fedora, причём тех же самых версий, что устанавливаются на домашние компьютеры.

Однако Roadrunner не является самым быстрым суперкомпьютером на сегодняшний день. Согласно рейтингу самых мощных компьютеров Top-500, наиболее производительным является японский суперкомпьютер K производства Fujitsu, запущенный в эксплуатацию незадолго до написания этих строк. Этот 70 000-процессорный гигант (причём процессоры, стоит заметить, все до одного восьмиядерные) на момент написания статьи обладал безумной производительностью в 8,162 ПФЛОПС. Даже не хватает воображения, что бы представить, чем же можно нагрузить подобную махину. Впрочем, на это есть учёные - перед ними стоят ещё очень много неразрешённых вопросов.

В соответствии с классификацией, предложенной М.Флинном еще в начале 60-х годов прошлого столетия, параллельные вычислительные системы имеют несколько разновидностей.При этом в основу данной классификации заложено два возможных вида параллелизма: независимость потоков заданий (команд), существующих в системе, и независимость (отсутствие логической связанности) данных, обрабатываемых в каждом потоке:

    Магистральные(конвейерные),в которых процессоры одновременно выполняют разные операции.Над последовательным потоком обрабатываемых данных; по принятой классификации такие системы относятся к системам с многократным потоком команд и однократным потоком данных МКОД (MISD MultipleInstructionSingleData);
    Векторные, в которых все процессоры одновременно выполняют одну команду. Над различными данными однократный поток команд с многократным потоком данных ОКМД (SIMD SingleInstructionMultipleData);
    Матричные, в которых процессоры одновременно выполняют разные операции. Над несколькими последовательными потоками обрабатываемых данных многократный поток команд с многократным потоком данных МКМД (MIMD MultipleInstructionMultipleData).
    В суперЭВМ используются все три варианта архитектуры параллельных вычислительных систем.

Традиционной сферой внедрения суперкомпьютеров постоянно были исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория простых частиц, газовая динамика и теория турбулентности, астрофизика.
В химии - разные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новейших материалов, к примеру, катализаторов и сверхпроводников), молекулярная динамика, хим. кинетика, теория поверхностных явлений и химия твердого тела, конструирование фармацевтических средств. Естественно, что ряд областей внедрения находится на стыках соответственных наук, к примеру, химии и биологии, и перекрывается с техническими приложениями. Так, задачи метеорологии, исследование атмосферных явлений и, сначала, задача длительного прогноза погоды, для решения которой постоянно не хватает мощностей современных суперЭВМ, тесновато соединены с решением ряда вышеперечисленных проблем физики. Посреди технических проблем, для решения которых употребляются суперкомпьютеры, укажем на задачи аэрокосмической и авто индустрии, ядерной энергетики, предсказания и разработки месторождений нужных ископаемых, нефтедобывающей и газовой индустрии (в том числе трудности действенной эксплуатации месторождений, в особенности трехмерные задачки их исследования), и, в конце концов, конструирование новейших микропроцессоров и компов, сначала самих суперЭВМ.

Суперкомпьютеры обычно используются для военных целей. Не считая тривиальных задач разработки орудия массового ликвидирования и конструирования самолетов и ракет, можно упомянуть, к примеру, конструирование бесшумных подводных лодок и др. Самый известный пример - это южноамериканская программа СОИ. Уже упоминавшийся MPP-компьютер Министерства энергетики США будет применяться для моделирования ядерного орудия, что дозволит,в общем, отменить ядерные тесты в данной стране.
Еще есть одна неувязка внедрения суперЭВМ, о которой нужно огласить - это визуализация данных, приобретенных в итоге выполнения расчетов. Нередко, к примеру, при решении дифференциальных уравнений способом сеток, приходится сталкиваться с циклопическими размерами результатов, которые в числовой форме человек просто не в состоянии обработать. Тут во почти всех вариантах нужно обратиться к графической форме представления информации. В любом случае возникает задача транспортировки информации по компьютерной сети. Решению этого комплекса проблем в ближайшее время уделяется все большее внимание. А именно, известный Государственный центр суперкомпьютерных приложений США (NCSA) вместе с компанией SiliconGraphics ведет работы по программе "суперкомпьютерного окружения грядущего". В этом проекте предполагается интегрировать способности суперкомпьютеров POWER CHALLENGE и средств визуализации компании SGI со средствами информационной супермагистрали.

Для кого разрабатываются сверхмощные и сверхумные машины и где они используются? Компьютеры используются учеными при решении задач квантовой физики и механики.

В военной промышленности суперкомпьютеры помогают разрабатывать новые тактические и стратегические позиции, позволяют проводить различные исследования по повышению эффективности готовой боевой техники и по ее модернизации. Также новейшие виды оружия и средств защиты разрабатываются вычислительными машинами.

Исследование ядерных процессов, моделирование цепной реакции и ядерного взрыва дают ученым богатый материал для исследования этих удивительных, но опасных явлений.

Изучение молекулярной структуры белка помогает сделать немало важных и ценных для человечества открытий, определить причины и механизмы генетически обусловленных заболеваний. Такая работа под силу только суперкомпьютерам.

Виртуальные модели кровеносной системы человека исследуются врачами и биологами, чтобы получить эффективные способы борьбы с заболеваниями сердца и сосудов.

Но суперкомпьютеры нужны не только для проведения серьезных научных исследований, результаты которых принесут человечеству плоды только в будущем. Прикладное применение суперкомпьютеров можно обнаружить во многих сферах нашей жизни.

Современные медицинские исследования, новейшие разработки и научные открытия стали возможны именно благодаря суперкомпьютерам, которые позволяют проводить своевременную диагностику, с большим процентом вероятности прогнозировать ход болезни и реакцию организма на лечение. Суперкомпьютеры позволяют моделировать процессы, происходящие в жизненно важных органах, чтобы понять основной принцип их работы и эффективно бороться с патологиями.

В биологии суперкомпьютеры, микрочипы и электронные микроскопы используются для изучения процессов, происходящих на клеточном уровне, что дает большие возможности для серьезнейших научных открытий, способных изменить современную науку.

В медицине и биологии суперкомпьютеры больше нужны именно для исследовательской работы, хотя, некоторые крупные клиники могут позволить себе использовать такие машины и для решения прикладных задач: диагностики и лечения.

Суперкомпьютеры нужны не только для фиксирования данных на борту космических станций и обеспечения эффективности работы этих грандиозных сооружений. Мощнейшая вычислительная техника позволяет проектировать новые орбитальные и межпланетные станции, выстраивать данные оптимальной траектории движения станций, изучать процессы, влияющие на геомагнитный фон Земли, отслеживать и предугадывать всплески солнечной активности и выявить их закономерности.

При разработке новых моделей космических станций и искусственных спутников, суперкомпьютеры проводят серьезную работу по моделированию и прогнозированию всех возможных ситуаций, обеспечивая, таким образом, безопасность полета.
Климат и погода.
Благодаря суперкомпьютерам стало возможно очень точно предсказывать погоду. Цифровая обработка данных, полученных на метеорологических станциях, производится в кратчайшие сроки, что дает шанс заглянуть в будущее и предупредить людей о возможных погодных неприятностях. Эта работа суперкомпьютеров тесно связана с прогнозами стихийных бедствий, которые способны спасти жизнь многих людей.
Стихийные бедствия и экологические катастрофы.
Современные мощные суперкомпьютеры дают возможность с большой долей вероятности прогнозировать природные катаклизмы: землетрясения, цунами, пожары, наводнения и штормы. Чем раньше люди получат информацию о надвигающейся беде, чем больше у них шансов спастись.
Промышленность.
Благодаря суперкомпьютерам наша жизнь становится более комфортабельной и безопасной, ведь именно эти машины помогают разрабатывать новые модели автомобилей и самолетов. Исследование аэродинамических свойств, устойчивости, маневренности, способы сочетать эти качества в оптимальной пропорции могут только суперкомпьютеры.

5 самых мощных суперкомпьютеров: для чего они нужны?

Модели с огромной производительностью, укомплектованные тысячами процессоров и десятками гигабайт ОЗУ, называются суперкомпьютерами. Самые мощные можно найти в списке TOP500, где первые 5 мест занимают американские модели Summit и Sierra, китайские ЭВМ Sunway TaihuLight и Тяньхэ-2, а также швейцарский Piz Daint.

Что такое суперкомпьютер

СуперЭВМ – название, которое получают специализированные вычислительные машины, превосходящие по характеристикам и скорости вычисления большинство обычных компьютеров.

Суперкомпьютер состоит из большого количества многоядерных систем, объединенных в общую систему для получения высокой производительности. Еще одно отличие от обычных ПК – большие размеры. Техника располагается в нескольких помещениях, занимая целые этажи и здания.

Первым настоящим суперкомпьютером считается собранный в 1974 году в США ПК Cray-1. Благодаря поддержке векторных операций модель выполняла до 180 млн вычислений с плавающей точкой в секунду (флопс). Большая часть суперЭВМ по-прежнему собирается и используется в Соединенных Штатах, следующими по количеству такой техники идут Китай и Япония.

Назначение суперкомпьютеров

Суперкомпьютеры решают разнообразные задачи – от сложных математических расчетов и обработки огромных массивов данных до моделирования искусственного интеллекта. Есть модели, воспроизводящие «архитектуру» человеческого мозга. На СуперЭВМ проектируют промышленное оборудование и электронику, синтезируют новые материалы и делают научные открытия.

Автомобилестроительные компании используют суперкомпьютеры для имитации результатов краш-тестов, экономя средства на настоящих испытаниях. Подходит такая мощная техника и для разработки новых двигателей, позволяя моделировать специальный температурный режим и процессы деформации. С ее же помощью можно прогнозировать метеорологические явления и даже землетрясения.

1. Summit

Суперкомпьютер Summit, созданный американской компанией IBM для Национальной лаборатории в Окридже. Технику ввели в эксплуатацию летом 2018 года, заменив модель Titan, которая считалась самой производительной американской СуперЭВМ. Разработка лучшего современного суперкомпьютера обошлась американскому правительству в 200 млн долларов.

Устройство потребляет около 15 МВт электроэнергии – столько, сколько вырабатывает небольшая ГЭС. Для охлаждения вычислительной системы используется 15,1 кубометра циркулирующей по трубкам воды. Сервера IBM расположены на площади около 930 кв.м – территория, которую занимают 2 баскетбольные площадки. Для работы суперкомпьютера используется 220 км электрокабелей.


Производительность компьютера обеспечивается 9216 процессорами модели IBM POWER9 и 27648 графическими чипами Tesla V100 от Nvidia. Система получила целых 512 Гбайт оперативной и 250 Пбайт постоянной памяти (интерфейс 2,5 Тбайт/с). Максимальная скорость вычислений – 200 Пфлопс, а номинальная производительность – 143,5 Пфлопс.

По словам американских ученых, запуск в работу модели Summit позволил повысить вычислительные мощности в сфере энергетики, экономическую конкурентоспособность и национальную безопасность страны. Среди задач, которые будут решаться с помощью суперкомпьютера, отмечают поиск связи между раковыми заболеваниями и генами живого организма, исследование причин появления зависимости от наркотиков и климатическое моделирование для составления точных прогнозов погоды.

2. Sierra

Второй американский суперкомпьютер Sierra (ATS-2) тоже выпущен в 2018 году и обошелся Соединенным Штатам примерно в 125 миллионов долларов. По производительности он считается вторым, хотя по среднему и максимальному уровню скорости вычислений сравним с китайской моделью Sunway TaihuLight.

Расположена СуперЭВМ на территории Национальной лаборатории имени Э. Лоуренса в Ливерморе. Общая площадь, которую занимает оборудование, составляет около 600 кв.м. Энергопотребление вычислительной системы – 12 МВт. И уже по соотношению производительность к расходу электричества компьютер заметно обогнал конкурента из КНР.


В системе используется 2 вида процессоров – серверные ЦПУ IBM Power 9 и графические Nvidia Volta. Благодаря этим чипам удалось повысить и энергоэффективность, и производительность. 4320 узлов со 190 тысячами ядер обеспечивают вычисления на скорости 94,64 петафлопс. Максимальная производительность – 125,712 Пфлопс или 125 квадриллионов операций с плавающей точкой в секунду.

Новую систему предполагается использовать в научных целях. В первую очередь – для расчетов в области создания ядерного оружия, заменяя вычислениями подземные испытания. Инженерные расчеты с помощью Sierra позволят разобраться и с ключевыми вопросами в области физики, знание которых позволит совершить ряд научных открытий.

3. Sunway TaihuLight

Китайская СуперЭВМ удерживала лидирующую позицию в рейтинге TOP500 с 2016 до 2018 года. В соответствии с тестами LINPACK ее считали самым производительным суперкомпьютером, минимум в полтора раза превосходящим ближайшего конкурента и втрое опережающим самую производительную американскую модель Titan. Разработка и строительство вычислительной системы обошлось в 1,8 млрд. юаней или 270 млн долларов. Инвесторами проекта были правительство Китая, администрация китайской провинции Цзянсу и города Уси.


Суперкомпьютер потребляет 15,3 МВт электроэнергии и занимает площадь 605 кв.м. Расположен он на территории города Уси, в национальном суперкомпьютерном центре. Название модели дали в честь расположенного рядом озера Тайху, третьего по величине пресноводного водоема Китая.

Наличие в конструкции ЭВМ 41 тысячи процессоров SW26010 и 10,6 миллиона ядер позволяет ей проводить расчеты со скоростью 93 Пфлопс. Максимальная производительность – 125 Пфлопс. Переход на чипы китайского производства потребовал от разработчиков создания полностью новой системы. До этого предполагалось в 2 раза повысить производительность другой китайской СуперЭВМ Тяньхэ-2, но эти намерения пришлось изменить из-за проблем с поставками процессоров Intel из США.

Модель Sunway TaihuLight применяется для выполнения сложных вычислений в области медицины, горнодобывающей промышленности и производстве. С помощью вычислительной машины прогнозируют погоду, исследуют новые лекарства и анализируют «большие данные» – массивы информации, обработать которые не получится даже у самого мощного серийного компьютера.

4. Тяньхэ-2

Суперкомпьютер Tianhe-2 («Млечный путь»), а, точнее, уже дополненная и модернизированная версия 2А, была разработана сотрудниками компании Inspur и научно-технического университета Народно-освободительной армии Китая. В июле 2013 года модель считалась самой производительной в мире и уступила пальму первенства только другому китайскому компьютеру TaihuLight. На сборку ЭВМ потратили около 200 млн долларов.

Сначала вычислительная система находилась на территории университета, а затем была перемещена в суперкомпьютерный центр в Гуанчжоу. Общая площадь, которую она занимает – около 720 кв. м. Энергопотребление модели составляет 17,8 МВт, что делает ее использование менее выгодным по сравнению с более современными версиями.


Техника построена на базе 80 тысяч ЦПУ Intel Xeon и Xeon Phi. Объем оперативной памяти – 1400 Гбайт, количество вычислительных ядер – больше 3 миллионов. На суперкомпьютере установлена операционная система Kylin Linux. Первые показатели работы системы – 33,8 Пфлопс, современная модификация достигает скорости вычислений 61,4 Пфлопс, максимальная – 100,679 Пфлопс.

СуперЭВМ создали по требованию китайского правительства, его основными задачами являются расчеты для проектов национального масштаба. С помощью системы решаются вопросы безопасности Китая, выполняется моделирование и анализ большого количества научной информации.

5. Piz Daint

Суперкомпьютер Piz Daint достаточно долго (с 2013 до 2018 года) занимал третье место в рейтинге самых мощных вычислительных систем в мире. В то же время он остается самым производительным компьютером Европы. Стоимость проекта составила около 40 млн швейцарских франков.

Модель получила название в честь одноименной территории в Швейцарских Альпах и находится в национальном суперкомпьютерном центре. Оборудование, из которого состоит СуперЭВМ, располагается в 28 стойках. Для работы техники требуется 2,3 МВт электричества, и по этому показателю Piz Daint обеспечивает лучшую удельную производительность – 9,2 Пфлопс/МВт.


В составе ЭВМ есть другой суперкомпьютер Piz Dora, сначала работавший отдельно. После объединения мощностей швейцарские разработчики получили вычислительную систему с 362 тысячами ядер (процессоры Xeon E5-2690v3) номинальной производительностью 21,23 Пфлопс. Максимальная скорость работы – 27 Пфлопс.

Основные задачи суперкомпьютера – расчеты для исследований в области геофизики, метеорологии, физике и климатологии. Одно из приложений для ЭВМ, COSMO, представляет собой метеорологическую модель и используется метеослужбами Германии и Швейцарии для получения высокоточных прогнозов погоды.

Сборник тестов по дисциплине "Информатика" СПО 1 курс

Одной из характеристик современного общества является использование информационных и коммуникационных технологий во всех сферах жизнедеятельности человека. Поэтому перед образованием стоит проблема формирования информационной компетентности специалиста (способности индивида решать учебные, бытовые, профессиональные задачи с использованием информационных и коммуникационных технологий), обеспечивающей его конкурентоспособность на рынке труда.

Подготовка специалистов среднего звена требует широкого использования активных форм обучения. К их числу относятся деловые игры, практические упражнения, тренинги, тесты и др.

Тестовые задания по дисциплине «Информатика» содержат вопросы по основным темам и понятиям теоретического курса, что позволит студенту при самостоятельной работе в межсессионный период охватить весь курс вопросов дисциплины согласно учебной программе.

Указанные тесты могут быть использованы обучающимися при самостоятельной подготовке для самоконтроля, а также преподавателем для контроля знаний обучающихся.

Индивидуальная работа студентов содействует более глубокому освоению курса, приучает студентов к самостоятельной работе с учебной и другой специальной литературой.

РАЗДЕЛ 1. ИНФОРМАЦИОННАЯ ДЕЯТЕЛЬНОСТЬ ЧЕЛОВЕКА

ИНФОРМАЦИОННОЕ ОБЩЕСТВО И ИНФОРМАЦИОННЫЕ РЕСУРСЫ

Выберите один правильный ответ.

1. Информационное общество - это:

а) общество, в котором большая часть населения имеет дома персональный компьютер и умеет работать на нем;

б) общество, в котором большая часть населения занята получением, переработкой, передачей и хранением информации;

в) общество, в котором большая часть населения умеет получать информацию из любых информационных источников.

2. Сколько всего в истории человечества случилось информационных революций?

3. С чем связана первая информационная революция?

а) с изобретением колеса;

б) с развитием торговли;

в) с изобретением письменности.

4. С чем связана вторая информационная революция?

а) с изобретением микропроцессоров;

б) с изобретением книгопечатания;

в) с изобретением электричества.

5. Какая информационная революция позволила оперативно накапливать и передавать информацию?

6. Что предполагает информационная культура общества?
а) знание современных программных продуктов ;

б) знание иностранных языков и умение использовать их в своей деятельности ;

в) умение целенаправленно работать с информацией и использовать ее для получения, обработки и передачи в компьютерную информационную технологию.

7. Информационные ресурсы общества – это…
а) документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных, депозитариях, музейных хранилищах и т. п.);

б) первичные документы, которые используются предприятиями для осуществления своей деятельности;

в) отчетные документы, необходимые для принятия управленческих решений.

8. Между информационными ресурсами и всякими иными существует одно важнейшее различие…
а) всякий ресурс, кроме информационного, после использования исчезает;
б) всякий ресурс, кроме информационного, после использования не исчезает;
в) всякий ресурс, кроме информационного, после использования переходит на новый уровень.

9. Что такое цифровой образовательный ресурс?

а) библиотека наглядных пособий;

б) совокупность материалов (данных) в цифровом виде, применяемая для использования в учебном процессе;

в) основной инструмент для регулярных систематических занятий по предмету;

г) электронное средство учебного назначения.

10. Что можно отнести к электронным образовательным ресурсам?

а) электронные книги;

б) электронные библиотеки;

в) компьютерные обучающие программы;

г) автоматизированные учебные курсы;

д) коллекции мультимедийных иллюстративных материалов;

е) интерактивные модели;

ж) все выше перечисленное.

ПРАВОВЫЕ НОРМЫ, ОТНОСЯЩИЕСЯ К ИНФОРМАЦИИ

1. Что является объектом авторского права в информатике?

а) только программы;

б) программы и базы данных;

в) программы и любые файлы данных;

г) только базы данных.

2. Программы для ЭВМ…

а) являются объектами авторского права с момента их создания;

б) не являются объектами авторского права;

в) являются объектами авторского права после записи на носитель;

г) являются объектами авторского права после официального заявления о написании программы.

3. На какие группы делятся программы по их правовому статусу?

а) бесплатные, условно бесплатные и лицензионные;

б) лицензионные, условно бесплатные и свободно распространяемые программы;

в) платные, лицензионные и бесплатные.

4. Что гарантируют разработчики лицензионной программы потребителям?

а) нормальное функционирование программы и несут за это ответственность;

б) версии программы с ограниченным сроком действия;

в) дополнения к ранее выпущенным программам.

5. Что является программным средством защиты лицензионных программ от копирования?

в) атрибут доступа;

6. Какие программы называют условно бесплатными?

а) программы, разработчики которых гарантируют её нормальное функционирование в определенной операционной системе и несут за это ответственность;

б) версии программы с определённым сроком действия или версии программ с ограниченными функциональными возможностями;

в) новые недоработанные (бета) версии программных продуктов, программные продукты, являющиеся частью принципиально новых технологий, дополнения к ранее выпущенным программам

7. С какой целью предлагают разработчики условно бесплатные программы?

а) с целью доработки этих программ;

б) с целью предложения принципиально новых технологий;

в) с целью рекламы и продвижения программ на рынок.

8. Какие проблемы возникают при использовании нелицензионного программного продукта?

а) корректная работа программ;

б) нестабильная работа программ;

в) отсутствие файла справки, документации, руководства;

г) наличие технической поддержки;

д) невозможность установки обновлений;

е) опасность заражения компьютерными вирусами.

9. Соотнесите виды ПО и названия программ.

1. Лицензионное ПО

2. Свободно распространяемое ПО

3. Условно бесплатное ПО

10. Сколько составляет максимальный срок лишения свободы за компьютерные преступления?

РАЗДЕЛ 2. ИНФОРМАЦИЯ И ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ

ПОНЯТИЕ ИНФОРМАЦИИ И ЕЕ ИЗМЕРЕНИЕ

1. Что означает слово «информация» в переводе с латинского языка?

г) уменьшение неопределенности.

2. В каком утверждении ближе всего раскрывается смысл понятия «информация», используемого в бытовом общении?

а ) последовательность знаков некоторого алфавита;

г ) сведения об окружающем мире, воспринимаемые человеком ;

д ) сведения, содержащиеся в научных теориях .

3. Что понимают под информацией в теории информации?

а ) сигналы от органов чувств человека;

б ) сведения, уменьшающие неопределенность;

в ) характеристику объекта, выраженную в числовых величинах;

г ) отраженное разнообразие окружающей действительности;

д ) сведения, обладающие новизной .

4. Что изучает информатика?

а) хранение информации в сложных управляющих системах ;

б) способы представления, накопления обработки информации с помощью технических средств;

в) компьютерные программы;

г) технические средства .

5. Одно из свойств информации – это…

6. Одно из свойств информации – это…

7. Установите соответствие между свойством информации и его описанием.

1) достоверность а) язык понятен получателю

2) полнота б) правильность, непротиворечивость

3) понятность в) вовремя, в нужный срок

4) ценность г) имеются все необходимые данные

5) своевременность д) полезность, важность, значимость

8. Наибольший объем информации человек получает при помощи…

а) вкусовых рецепторов;

б) органов осязания;

в) органов зрения;

г) органов слуха;

д) органов обоняния.

9. Установите соответствие.

Пример информации

Вид информации

2) запах котлеты

4) сладкая ягода

5) шорох листьев

10. По форме представления можно условно выделить следующие виды информации:

а ) социальную, политическую, экономическую, техническую, религиозную и пр.;

б ) текстовую , числовую, графическую, звуковую, видеоинформацию ;

в ) обыденную, научную, производственную, управленческую;

г ) визуальную звуковую, тактильную, обонятельную, вкусовую;

д ) математическую, биологическую, медицинскую, психологическую.

12. Установите соответствие:

1) 1 бит а) 8 бит

2) 1 Мб б) 1024 Кб

3) 1 Тб в) 2 10 Гб

4) 1 байт г) минимальная единица

13. Установите соответствие:

1) 1 Кб а) 3 байт

2) 2 Мб б) 1024 байт

3) 1 Гб в) 2048 Кб

4) 24 бит г) 2 30 байт

14. В какой из последовательностей единицы измерения указаны в порядке возрастания?

а) мегабайт, килобайт, байт, гигабайт;

б) байт, килобайт, мегабайт, гигабайт;

в) гигабайт, килобайт, мегабайт, байт;

г) гигабайт, мегабайт, килобайт, байт.

15. Укажите формулу для определения количества информации.

СИСТЕМЫ СЧИСЛЕНИЯ

1. Что такое система счисления?

а) цифры 1,2,3,4,5,6,7,8,9;

б) правила арифметических действий;

в) компьютерная программа для арифметических вычислений;

г) это знаковая система, в которой числа записываются по определенным правилам, с помощью знаков некоторого алфавита, называемых цифрами.

2. Что называется основанием системы счисления?

а) количество цифр, используемых для записи чисел;

б) отношение значений единиц соседних разрядов;

в) количество правил вычислений в системе;

г) сумма всех цифр системы счисления.

3. На какие группы делятся системы счисления?

а) однозначные и неоднозначные;

б) цифровые и буквенные;

в) позиционные и непозиционные;

г) целые и дробные.

4. Установите соответствие:

1) двоичная система счисления а) 28АС

2) десятичная система счисления б) 111001

3) восьмеричная система счисления в) 1980

4) шестнадцатеричная система счисления г) 347

5. Какая запись числа 729 в десятичной системе счисления будет верной:

а) 7·10 3 + 2·10 2 + 9·10 1 ;

б) 7·10 2 + 2·10 1 + 9·10 0 ;

в) 7·10 0 + 2·10 1 + 9·10 2 ;

г) 7·10 1 + 2·10 2 + 9·10 3 .

6. Как записывается число 1310 в двоичной системе счисления?

7. Как записывается число 110112 в десятичной системе счисления?

8. Младший брат учится в 101 классе. Старший на 11 старше. В каком классе учится старший брат?

9. В кабинетах биологии и информатики 1010 кактусов. В биологии их 111. Сколько кактусов в кабинете информатики?

10. Какая система счисления не используются специалистами для общения с ПК?

КОМПЬЮТЕРНЫЕ МОДЕЛИ

Выберите один правильный ответ.

1. Что такое моделирование?
а) замещения одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала;

б) создание определенно новой модели для тестирования какого-либо объекта;

в) процесс выявления существенных признаков рассматриваемого объекта;

г) формальное описание процессов и явлений.

2. Модель есть замещение изучаемого объекта другим объектом, который отражает.

а) все стороны данного объекта;
б) некоторые стороны данного объекта;
в) существенные стороны данного объекта;
г) несущественные стороны данного объекта.

3. Модель содержит информации.

а) столько же, сколько и моделируемый объект;

б) меньше, чем моделируемый объект;

в) больше, чем моделируемый объект;

г) не содержит информации.

4. Модель может быть…

а) материальным объектом;

б) мыслимым объектом;

в) математической формулой;

г) компьютерной программой;

д) всем выше перечисленным.

5. Что является математической моделью?

а) милицейский протокол;

б) правила дорожного движения;

в) формула нахождения корней квадратного уравнения;

г) кулинарный рецепт;

д) инструкция по сборке мебели.

6. Информационной моделью организации учебного процесса в школе является.

а) правила поведения учащихся;
б) список класса;
в) расписание уроков;
г) перечень учебников.

7. Файловая система персонального компьютера наиболее адекватно может быть описана в виде…

а) табличной модели;

б) графической модели;

в) иерархической модели;

г) математической модели.

8. Расписание движение поездов можно рассматривать как пример…

а) предметной модели;

б) табличной модели;

в) графической модели;

г) компьютерной модели;

д) математической модели.

9. Чертеж детали можно рассматривать как пример…

а) предметной модели;

б) табличной модели;

в) графической модели;

г) компьютерной модели;

д) математической модели.

10. Как какую модель следует рассматривать описание глобальной компьютерной сети Интернет в виде системы взаимосвязанных компьютеров?
а) математическую модель
б) сетевую модель:
в) графическую модель.

ОСНОВЫ ЛОГИКИ

Выберите один правильный ответ.

1. Как называется форма мышления, в которой что-либо утверждается или отрицается об объектах, признаках или отношениях объектов?
а) понятие;

б) высказывание (суждение);
в) умозаключение;

2. К какой форме мышления относится следующее предложение: «Процессор – это устройство, которое обрабатывает информацию»?

б) высказывание (суждение);
в) умозаключение;

3. Какое из предложений не является высказыванием?
а) Внимание!;

б) Число 6 – четное;
в) Некоторые рыбы – хищники;

г) Эта ночь холодная.

4. Как называется логическое умножение?
а) инверсия;

5. Как называется логическое сложение?
а) инверсия;

6. Как называется логическое отрицание?
а) инверсия;

7. Какой из логических функций принадлежит следующая таблица истинности?

Фото: Unsplash

Какой компьютер является мощнейшим на сегодняшний день?

В конце июня 2020 года был опубликован ежегодный рейтинг из 500 самых мощных суперкомпьютеров в мире. Первую строчку в нем занял японский Fugaku. Он в 2,8 раз мощнее, чем прошлогодний лидер — Summit от IBM (он теперь на втором месте). Впервые рейтинг возглавил компьютер на базе процессоров ARM.

Fugaku разработала компания Fujitsu — та самая, что выпускала популярную фото- и видеотехнику Fuji. Разработки велись на базе Института Кобе в составе Института физико-химических исследований (RIKEN). Концепцию придумали еще в 2010 году, а на создание и сборку ушло более шести лет.

Пишут, что Fugaku сможет помочь в борьбе с коронавирусом. Но на самом деле суперкомпьютеры способны решать самые амбициозные задачи, которые приходят нам в голову.

Чем суперкомпьютер отличается от обычного?

Суперкомпьютеры называют «числодробилками» или «числогрызами»: они нужны для супербыстрых вычислений. Главное отличие в том, что обычный компьютер выполняет задачи последовательно, хотя и на высокой скорости — вплоть до доли секунды, поэтому мы этого не замечаем. Суперкомпьютер делает это одновременно и обрабатывает огромный массив данных.

Для этого им нужны тысячи супермощных процессоров. В результате вычисления, на которые у мощного игрового компьютера уйдет неделя, суперкомпьютер выполняет за день. Однако важно, чтобы программы работали корректно, с учетом технических особенностей машины. Иначе то, что корректно работает на 100 процессорах, сильно замедлится на 200.

Современные смартфоны работают так же быстро, как самый мощный суперкомпьютер 1994 года.

Суперкомпьютеры работают на специальном ПО. Например, у Fugaku операционная система Red Hat Enterprise Linux 8 c гибридным ядром, состоящим из одновременно работающих ядер Linux и McKernel. В качестве программных средств используют API — то есть интерфейсы или платформы для программирования — и открытое ПО, которое позволяет создавать виртуальные суперкомпьютеры на базе обычных. Часто суперкомпьютер — это несколько высокомощных компьютеров, которые объединены высокоскоростной локальной сетью.

Обычно производительность компьютеров оценивается во флопсах (FLOPS — FLoating-point Operations Per Second) — то есть количестве операций над числами с плавающей точкой в секунду. Для суперкомпьютеров сначала использовали мегафлопсы — MIPS, количество миллионов операций в секунду, а с 2008 года петафлопсы — то есть количество миллионов миллиардов вычислений в секунду. К примеру, у суперкомпьютера Fugaku производительность составляет 415 петафлопс, а у Summit — 148.

Кто придумал суперкомпьютер?

Сам термин появился в конце 1960-х годов в Ливерморской национальной лаборатории США и компании-производителе компьютеров CDC. Но впервые о «супервычислениях» заговорили еще в 1920-х годах, когда IBM собрала для Колумбийского университета свой табулятор — первую ЭВМ, работавшую на перфокартах.

Первой супер-ЭВМ считают Cray-1, созданную в 1974 году. Ее разработал Сеймур Крей — американский инженер в области вычислительной техники и основатель компании Cray Research. Cray-1 выполняла до 180 млн операций в секунду.

За основу Крэй уже имеющиеся разработки — компьютеры CDC 8600 и CDC STAR-100. Он построил процессор, который быстро выполнял и скалярные и векторные вычисления: предшественники хорошо справлялись либо с первыми, либо со вторыми.

Скалярные вычисления — те, где используется одна характеристика, величина и знак. В векторных используют вектора, то есть величину и направление (угол).

Для этого инженер использовал небольшие модули памяти, расположенные близко к процессору, чтобы увеличить скорость. Так был создан новый принцип работы с памятью — «регистр-регистр». Центральный процессор берет и записывает данные в регистры, а не в память, как у предыдущих моделей — это тоже увеличило скорость обработки. Сам процессор состоял из 144 тыс. микросхем, которые охлаждались фреоном.

Cray-1 впервые презентовали в 1975-м, и за нее тут же начали биться ведущие лаборатории США, занимающиеся сложными вычислениями. В 1977-м компьютер достался Национальному центру атмосферных исследований, где проработал 12 лет. Cray-1 можно было арендовать для работы за $7 500 в час или $210 тыс. в месяц.

В 1980-х годах Крэй выпустил еще две модели суперкомпьютеров нового поколения, включая многопроцессорный Cray X-MP. Начиная с 1990-х лидерство перехватили NEC, Hewlett-Packard и IBM, причем компьютеры последней регулярно занимают верхние строчки того самого ТОП-500.

Где и для чего используют суперкомпьютеры?

Главная задача суперкомпьютеров — выполнять максимум вычислений за минимум времени. Это полезно для многих областей: начиная от создания лекарств и заканчивая разработками новых продуктов и технологий,

Суперкомпьютер Fugaku изучает пути распространения вируса и его диагностику. Для этого он обрабатывает данные статистики, коэффициент заражения вируса, его состав и модель поведения. А еще ему поручат прогнозирование и симуляцию природных катастроф, разработку и совершенствование «зеленых» технологий.

Есть суперкомпьютеры, которые работают с одним-единственным приложением, которое задействует всю память. Например, для прогнозирования изменений погоды и климата или моделей ядерных испытаний. В будущем это позволит отказаться от реальных испытаний опасного оружия и исключить риски взрывов или утечек при долгом хранении.

Великобритания выделит $1,6 млрд на создание мощнейшего в мире суперкомпьютера для прогнозирования погоды и климатических изменений.

Министерство энергетики США и Аргоннская национальная лаборатория, совместно с Intel и Cray, обещают в 2021 году представить суперкомпьютер Aurora для исследований в области ядерного оружия. Он будет выполнять 1 квинтиллион операций в секунду и обойдется в $500 млн.

Но суперкомпьютеры не просто вычисляют, а моделируют реальность. То есть просчитывают все возможные варианты развития событий и строят прогнозы. Поэтому с их помощью астрономы и астрофизики воспроизводят самые разные события и процессы во Вселенной.

В марте этого года астрономы из Технологического университета Суинберна (Австралия) и Калифорнийского технологического университета (США) смоделировали на суперкомпьютере эволюцию Млечного Пути. Для этого они использовали все данные о звездных скоплениях в нашей галактике.

Нанокомпьютер, квантовый компьютер и суперкомпьютер: в чем разница?

Все это — вычислительные устройства с выдающимися характеристиками.

Нанокомпьютер — это компьютер микроскопических размеров. Он запрограммирован на определенные химические свойства и поведение. Он может быть очень мощным и высокопроизводительным, но пока что не таким, как суперкомпьютер. В будущем они смогут заменить обычные устройства, так как потребляют намного меньше энергии.

Группа инженеров и ученых из Гарвардского университета и компании Mitre создала простейший нанокомпьютер, который состоит из множества крошечных проводников диаметром 15 нанометров (нанометр = 1 миллиардная метра). Их ядро из германия, а внешняя оболочка — из кремния.

Свой нанокомпьютер есть и у IBM, но уже покрупнее: 1х1 мм. Это полноценный ПК с процессором, памятью и блоком питания. По производительности его можно сравнить с x86-совместимыми процессорами из 1990-х годов. Его можно будет применять для работы с ИИ, сортировки данных, логистики, обнаружения краж.

Квантовый компьютер — это устройство, которое работает по принципам квантовой механики. Он обрабатывает данные не в битах, а в кубитах, которые одновременно равны 0 и 1. В теории, такой компьютер может обрабатывать все возможные состояния одновременно.

Пока что квантовые компьютеры существуют в виде концепций и моделей. Одна из таких принадлежит «Росатому»: проект рассчитан на срок до 2024 года и предполагает финансирование ₽24 млрд.

Какое будущее ждет суперкомпьютеры?

Очевидно, что производительность суперкомпьютеров будет разгоняться до космических цифр, их размеры — уменьшаться, а потребление энергии — сокращаться. Но самое интересное кроется в задачах, которые они смогут решать.

Эксперты считают, что через 15 лет симуляции отойдут на второй план, а машинное обучение позволит суперкомпьютерам выполнять глубокую аналитику данных. В итоге их будут применять везде: от разработки бесконечных аккумуляторов до лекарства от рака.

Читайте также: