Как устроена подсветка lcd дисплея

Обновлено: 04.07.2024

Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.

Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.

ЖК монитор. Основные функциональные блоки.

Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:

Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).

Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.

Маркировка ЖК-панели: CHUNGHWA CLAA170EA

На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

ЖК-панель компьютерного монитора Acer AL1716

На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Печатная плата ЖК-панели и её элементы

Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I2C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Основная плата (Main board) ЖК-монитора.

Вторым микропроцессором на плате управления является так называемый мониторный скалер (контроллер ЖКИ) TSU16AK. Задач у данной микросхемы много. Она выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала и подготовке его к подаче на панель ЖКИ.

В отношении жидкокристаллического монитора нужно понимать, что это по своей сути цифровое устройство, в котором всё управление пикселями ЖК-дисплея происходит в цифровом виде. Сигнал, приходящий с видеокарты компьютера является аналоговым и для его корректного отображения на ЖК матрице необходимо произвести множество преобразований. Для этого и предназначен графический контроллер, а по-другому мониторный скалер или контроллер ЖКИ.

Мониторный скалер TSU16AK взаимодействует с управляющим микроконтроллером SM5964 по цифровой шине. Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы.

Микроконтроллер TSU16AK через шлейф связан с микросхемой NT7168F-00010 на плате ЖК-панели.

При неисправностях графического контроллера у монитора, как правило появляются дефекты, связанные с правильным отображением картинки на дисплее (на экране могут появляться полосы и т.п). В некоторых случаях дефект можно устранить пропайкой выводов скалера. Особенно это актуально для мониторов, которые работают круглосуточно в жёстких условиях.

При длительной работе происходит нагрев, что плохо сказывается на качестве пайки. Это может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других аппаратов, например, DVD плееров. Причиной неисправности служит деградация либо некачественная пайка многовыводных планарных микросхем.

Блок питания и инвертор ламп подсветки.

Наиболее интересным в плане изучения является блок питания монитора, так как назначение элементов и схемотехника легче в понимании. Кроме того, по статистике неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Поэтому практические знания устройства, элементной базы и схемотехники блоков питания непременно будут полезны в практике ремонта радиоаппаратуры.

Блок питания ЖК монитора состоит из двух. Первый – это AC/DC адаптер или по-другому сетевой импульсный блок питания (импульсник). Второй – DC/AC инвертор. По сути это два преобразователя. AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины. Обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт.

Инвертор DC/AC наоборот преобразует постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц. Переменное напряжение подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

Вначале рассмотрим AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров (за исключением дешёвых зарядников для мобильного, например).

Так в блоке питания ЖК монитора Acer AL1716 применена микросхема TOP245Y. Документацию (datasheet) по данной микросхеме легко найти из открытых источников.

В документации на микросхему TOP245Y можно найти типовые примеры принципиальных схем блоков питания. Это можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы.

Вот несколько примеров принципиальных схем блоков питания на базе микросхем серии TOP242-249.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Рис 1 .Пример принципиальной схемы блока питания

В следующей схеме применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в рассматриваемом нами блоке монитора Acer AL1716.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Рис 2. Принципиальная схема блока питания на базе микросхемы из серии TOP242-249

Заметим, что приведённые принципиальные схемы являются примерами. Реальные схемы импульсных блоков могут несколько отличаться.

Микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ – контроллер и мощный полевой транзистор, который переключается с огромной частотой от десятков до сотен килогерц. Отсюда и название — импульсный блок питания.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Блок питания ЖК монитора (AC/DC адаптер)

Схема работы импульсного блока питания сводится к следующему:

Выпрямление переменного сетевого напряжения 220В.

Эту операцию выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе напряжение чуть больше чем сетевое. На фото показан диодный мост, а рядом фильтрующий электролитический конденсатор (82 мкФ 450 В) – синий бочонок.

Преобразование напряжения и его понижение с помощью трансформатора.

Коммутация с частотой в несколько десятков – сотен килогерц постоянного напряжения (>220 B) через обмотку высокочастотного импульсного трансформатора. Эту операцию выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и трансформатор в обычных сетевых адаптерах, за одним исключением. Работает он на более высоких частотах, во много раз больше, чем 50 герц.

Поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди. Но необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. Те, кто не знает, что такое трансформатор и зачем он применяется, сперва ознакомьтесь со статьёй про трансформатор.

В результате трансформатор получается очень компактным. Также стоит отметить, что импульсные блоки питания очень экономичны, у них высокий КПД.

Выпрямление пониженного трансформатором переменного напряжения.

Эту функцию выполняют мощные выпрямительные диоды. В данном случае применены диодные сборки с маркировкой SRF5-04.

Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом. Обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но используются для выпрямления больших напряжений (20 – 50 вольт). Это нужно учитывать при замене дефектных диодов.

У диодов Шоттки есть некоторые особенности, которые нужно знать. Во-первых, эти диоды имеют малую ёмкость перехода и способны быстро переключаться – переходить из открытого состояния в закрытое. Это свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 вольт, против 0,6 – 0,7 вольт у обычных диодов. Это свойство повышает их КПД.

Есть у диодов с барьером Шоттки и нежелательные свойства, которые затрудняют их более широкое использование в электронике. Они очень чувствительны к превышению обратного напряжения. При превышении обратного напряжения диод Шоттки необратимо выходит из строя.

Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоках питания. Это стоит учитывать в проведении диагностики и ремонте.

Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи. На схеме обозначена как R15C14 (см.рис.1).

При анализе схемотехники блока питания ЖК монитора Acer AL1716 на печатной плате также обнаружены демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811). Они защищают диоды Шоттки (D803, D805).

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Демпфирующие цепи на плате блока питания

Также стоит отметить, что диоды Шоттки используются в низковольтных цепях с обратным напряжением, ограниченным единицами – несколькими десятками вольт. Поэтому, если требуется получение напряжения в несколько десятков вольт (20-50), то применяются диоды на основе p-n перехода. Это можно заметить, если просмотреть datasheet на микросхему TOP245, где приводятся несколько типовых схем блоков питания с разными выходными напряжениями (3,3 B; 5 В; 12 В; 19 В; 48 В).

Диоды Шоттки чувствительны к перегреву. В связи с этим их, как правило, устанавливают на алюминиевый радиатор для отвода тепла.

Отличить диод на основе p-n перехода от диода на барьере Шоттки можно по условному графическому обозначению на схеме.

Условное обозначение диода с барьером Шоттки.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Условное обозначение диода на основе p-n перехода.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

После выпрямительных диодов ставятся электролитические конденсаторы, служащие для сглаживания пульсаций напряжения. Далее с помощью полученных напряжений 12 В; 5 В; 3,3 В запитываются все блоки LCD монитора.

По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами (ЭПРА), которые нашли широкое применение в осветительной технике для питания бытовых осветительных люминесцентных ламп. Но, между ЭПРА и инвертором ЖК монитора есть существенные различия.

Инвертор ЖК монитора, как правило, построен на специализированной микросхеме, что расширяет набор функций и повышает надёжность. Так, например, инвертор ламп подсветки ЖК монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G. Микросхема контроллера смонтирована на печатной плате планарным монтажом.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Микросхема контроллера OZ9910G

Инвертор преобразует постоянное напряжение, значение которого составляет 12 вольт (зависит от схемотехники) в переменное 600-700 вольт и частотой 50 кГц.

Контроллер инвертора способен изменять яркость люминесцентных ламп. Сигналы для изменения яркости ламп поступают от контроллера ЖКИ. К микросхеме-контроллеру подключены полевые транзисторы или их сборки. В данном случае к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (На корпусе микросхемы указано только 4501S).

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Сборка полевых транзисторов AP4501SD и её цоколёвка

Также на плате блока питания установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Плата инвертора и её элементы

Информацию по ремонту ЖК мониторов можно найти в специализированных журналах по ремонту. Так, например, в журнале “Ремонт и сервис электронной техники” №1 2005 года (стр.35 – 40), подробно рассмотрено устройство и принципиальная схема LCD-монитора “Rover Scan Optima 153”.

Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, уже упомянутый ЖК монитор Acer AL1716 пришёл на стол ремонта по причине нарушения контакта вывода розетки для подключения сетевого шнура. В результате монитор самопроизвольно выключался.

После разборки ЖК монитора было обнаружено, что на месте плохого контакта образовывалась мощная искра, следы которой легко обнаружить на печатной плате блока питания. Мощная искра образовывалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности — деградация пайки.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Деградация пайки, вызвавщая неисправность монитора

Также стоит заметить, что порой причиной неисправности может служить пробой диодов выпрямительного диодного моста.



Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.

Разбираем монитор

На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса

2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:

Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.
4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):

5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:

По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе. Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке — т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:

И блок с подсветкой отдельно:

Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».
Вот собственно и все — мы разобрали монитор.

Подсветка светодиодной лентой

Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 — 120 светодиодов на метр. Первое что оказалось — ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) — 7 мм (на самом деле бывают лампы подсветки двух стандартов — 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано — сделано:

Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т.е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится — прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.

On — сигнал с платы управления на включение подсветки (+5V)
Dim — ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):

В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off — нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:

Расчет выходного напряжения для LM2941 производится по формуле:

Vout = Vref * (R1+R2)/R1

где Vref = 1.275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:

Максимальное необходимое нам напряжение для ленты — 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится — около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм — 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 — 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).

Монтаж светодиодной ленты

Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):

Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):

После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:


Питание и сигнал управления On заводились с платы блока питания:

Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:

Pd = (Vin-Vout)*Iout +Vin*Ignd

  • Используется стандартная светодиодная лента
  • Простая плата управления
  • Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
  • Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
  • Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)

Регулировка яркости с помощью ШИМ


Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:

Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)

Более плотная LED подсветка

  • Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
  • Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
  • Все еще простая и дешевая плата управления
  • Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
  • LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса

Плата управления на основе Step-down регулятора


Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:

Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:

Я надеюсь, что эта статья сможет помочь таким же, как я — тем людям, которые выбирают телевизор, но не очень-то владеют тонкими техническими вопросами в этой области. Хотел бы поделиться с вами своими размышлениями и практическими выводами по-поводу выбора большого и качественного телевизора.
Последние 3 года я смотрел 42" ЖК-CCFL (это когда изображение формируется поляризованных светом от люминесцентных ламп, пропущенным через светофильтры). В 2009-м году еще не было 3D, а тонкие телевизоры с LED-подсветкой только появлялись и стоили нечестных денег. Куплен он был без особых мук выбора за $1400.
За пару лет созерцания я понял, что мне чего-то не хватает в изображении. Чего — я не мог описать, так как не владел нужными познаниями в этой области. Я точно знал, что хочу бОльшую диагональ и более глубокий черный.

После изучения матчасти я прояснил некоторые моменты.

I Тип формирования изображения.

На сегодняшний день есть 3 типа формирования изображения на современных телевизорах:

1 LCD.

Самый распространенный вид телевизоров. Изображения в таких телевизора получается при помощи поляризованного света, нескольких светофильтров и управляемых жидких кристаллов.

1.1 Типы подсветок LCD-телевизоров.

Так как изображение, которое мы видим на экране LCD-телевизора, получается в результате прохождения поляризованного света от источника подсветки, необходимо обозначить 2 типа подсветки:
a) CCFL, она же — холодный катод. Подвид тонких люминисцентных ламп, располагающихся за матрицей.
Преимущества: равномерность подсветки.
Недостатки: большая толщина, энергопотребление, невозможность локального управления подсветкой.
b) LED — светоизлучающие диоды. В настоящее время практически полностью вытеснили телевизоры с холодным катодом.
Преимущества: возможно сделать очень тонкие телевизоры, низкое энергопотребление, возможность локального управления подсветкой.

Про локальное управление подсветкой и подразделение LED-подсветки нужно сказать пару слов. LED-подсветка разделяется на 2 типа: краевая (она же EDGE-LED, когда светодиоды расположены по краям матрицы, их свет попадает на диффузор и рассеивается) и ковровая (Full HD LED, LED Pro). Так как ЖК-пикселы сами по себе не излучают свет, им необходима подсветка (о чем сказано выше), которая включена всегда. Закрытые кристаллы все равно пропускают свет, поэтому добиться низкого уровня черного (чем ниже — тем лучше) и контрастных переходов в системах с краевой подсветкой невозможно. В телевизорах самого высокого уровня используется ковровая подсветка (когда светодиоды располагаются непосредственно за матрицей). Это позволяет повысить равномерность подсветки и внедрить сегментированное управление подсветкой, когда отдельные диоды, отвечающие за области на экране, могут приглушать яркость в зависимости от сцены на экране. На самом деле, ковровую подсветку имеют это всего 2 серии — 9-я серия Philips и 9-я серия Sony. В 9-й серии LG тоже есть ковровая подсветка, но ее реализация хуже, чем краевая у конкурентных решений.

Неравномерность подсветки.

Из-за того, что светодиоды располагаются с определенной периодичностью (свое влияние вносит рассеивание и много других факторов), практически в 100% случаев LCD телевизоры с LED-подсветкой имеют неравномерность подсветки (clouding) — когда области, которые должны оставаться черными имеют другую градацию серого.
Проблема частично решается сегментированной светодиодной подсветкой.

1.2 Типы матриц LCD-телевизоров с LED-подсветкой.
Не буду вдаваться в подробности формирования изображения разными типами матриц, а вкратце опишу их основные преимущества и недостатки.
a) IPS (сейчас производит только LG). Матрицы, которые, по-моему мнению, идеально подходят для ТВ низкого и среднего уровня.
Преимущества: большие углы обзора.
Недостатки: высокий уровень черного (
2. Плазма.

С этим словом связано очень много мифов и заблуждений. Любой несведущий продавец обязательно скажет вам, что плазма устарела. Это связано с набором стереотипов и проблем, имевших место быть.
Изображение формируется при помощи свечения люминофора под действием УФ-лучей.
Каждая плазменная ячейка является независимым источником света, поэтому телевизор не требует подсветки. Ранее плазменные телевизоры имели очень большую толщину и размер ячейки, поэтому были очень громоздкими и диагонали Full HD начинались с 50—60". Теперь толщина современных плазменных телевизоров не превышает 3—4 см, а диагонали начинаются с 42".

У плазменных телевизоро нет различных типов матриц с маркетинговыми названиями, но есть поколения панелей (самое совершенное — 15-е).

Сейчас плазма почти вытеснена LCD-телевизорами и ее производством занимается всего 3 компании: Panasonic, Samsung и LG (причем, собственные разработки имеют только первые 2). Связано это с убыточностью производства, конкуренцией со стороны ЖК-телевизоров и их популяризацией. Но плазма держит первые позиции в больших диагоналях.

3. OLED.

Органические светодиоды. Что-то среднее, между первыми 2-мя технологиями. Изображение формируется при помощи самоизлучающих диодов, которые светятся под воздействием электрического тока. Как и в плазме, каждая ячейка является самостоятельным источником света. Пока имеются только несколько серийных образцов таких телевизоров по очень высоким ценам. Разработками в этой области занимаются LG и Samsung.

Есть и другие типы телевизоров, например проеционные лазерные телевизоры, но их разработка уже прекращена.

Кратко о преимуществах и недостатках каждой технологии:

LCD:
Преимущества:
— относительно невысокая цена производства, что позволяет производителям получать достаточно высокую прибыль и инвестировать в производство.
— Статический метод формирования изображения (без дизеринга) хорош для отображения изображений и фотографий.
— Отлично подходит для статичного изображения и не боится его.
— LCD-телевизоры имеют высокую яркость и низкое энергопотребление
Недостатки
— Высокий уровень черного (от 0.02 нит в UV²А-матрице с ковровой подсветкой до 0.2 нит в IPS).
— Большое время отклика
— Отсутствие объема и и глубины изображения
— Динамическое разрешение без искусственных ухищрений 300 — 700 линий.

Плазма
Преимущества
— Общая глубина изображения. В целом, при подаче качественного контента, изображение на плазме заметно отличается от такового в LCD: обладает большей глубиной и насыщенностью цветов, имеет ярко выраженный эффект объема.
— Низкий уровень черного (0.008 нит в моделях Panasonic 2012 года).
— Имеют динамическое разрешение без искусственных ухищрений 1080 линий.
— Отлично подходят для динамического изображения (фильмы), хорошо раскрывают высококачественный контент.
— Фактически отсутствует время отклика.
— Свободнейшие углы обзора
Недостатки
— Совершенно не подходят для подключения к компьютеру из-за остаточного изображения
— Хуже показывают фотографии (так как градации получаются при помощи дизеринга)
— Большое энергопотребление, не все модели имеют высокую яркость.
— Высокая цена производства, низкая маржа — производителям все сложнее удержаться на плаву.

OLED
Самая новая технология формирования изображения в телевизорах. Используются самоизлучающие органические светодиоды. Как и плазма, это дисплеи с самоэмиссией света, не требующие подсветки.
Сейчас выпущено всего несколько серийных образцов по цене в десяток раз превосходящей аналогичные LCD и плазменные телевизоры, но LG обещает, что через 3 года OLED-телевизоры аналогичных LCD и плазма-диагоналям будут стоить в 1.5 раза дороже.
Преимущества:
— низкое время отклика и высокий контраст, как и у плазмы, т. к. нет механически поворачивающихся молекул и постоянной подсветки, как в LCD.
— экономичность
— широкие углы обзора.
Недостатки:
— различная деградация пикселов со временем (так же, как у плазмы, что приводит в остаточным изображениям и выгоранию пикселов). Сейчас это пытаются компенсировать программно.
— Низкое время службы: около 10 000 часов (к примеру, у LCD — 60 000 часов, у плазмы — 100 000 тысяч часов).

II Характеристики изображения

Выбирая новый телевизор я пришел к выводу, что некоторые характеристики изображения можно изменить, некоторые нельзя.
Измеряемые характеристики:
— Уровень черного (MLL, Minimum luminescence level) — тот уровень черного, который показывает телевизор при подаче сигнала 0. [нит]
— Яркость — тот уровень яркость, который показывает телевизор, когда на него подается сигнал 255.
Эти 2 характеристики измеряются вместе, когда на телевизор выводится «шахматная доска» (метод ANSI) — чередование черных и белых участков. Вычисляется яркость каждого участка, среднее арифметическое яркостей черных и белых областей.
— Контраст. Разница между средним арифметическим черных и белых областей, когда черные области приняты за единицу.
ANSI-контраст IPS матриц составляет

1000:1, S-PVA — 3500:1, UV²А — 5000:1, плазма — 12000:1.
— Точность цветопередачи (DeltaE, отклонение от эталона). Подается сигнал на входе, измеряется сигнал на выходе. Чем больше отклонение — тем менее точная цветопередача. Считается, что невооруженный глаз неспособен заметить отклонение DeltaE < 3, а нулем обозначается идеальная цветопередача.
— Углы обзора. Чем меньше угол обзора матрицы, тем больше искажается цвет. Наименьшие углы имеют LCD S-PVA матрицы. Наибольшие — плазменные панели.
— Динамическое разрешение. Как известно, практически все телевизоры имеют статическое разрешение 1080 линий (1920x1080 точек), но динамическое разрешение (то, что телевизор показывает, когда на экране происходит движение) часто отличается. Именно для этого в LCD-телевизорах вводится мерцание подсветки, интерполяция кадров и другие ухищрения.

Субъективные характеристики
К таковым можно отнести объемность изображения, которая формируется сочетанием уровня черного и цветонасыщенности, «киношность» изображения, эффект присутствия.

Спасибо за внимание.
Если статья покажется интересной, в следующей части я напишу о выборе диагонали, типах 3D, их практическом различии, об интерполяции изображения и попытаюсь развенчать некоторые мифы.

В этой статье я расскажу вам о существующих на сегодняшний день видах подсветки матрицы любого жидкокристаллического монитора или телевизора (светодиодную LED и флуоресцентную CCFL).

Качество подсветки матрицы дисплея оказывает непосредственное влияние на такие важные характеристики монитора или телевизора, как контрастность, яркость и качество цветопередачи изображения. Без наличия качественной подсветки монитора, вы никогда не сможете получить, передающее все тонкости и нюансы изображение.

Так же недостаточная яркость и контрастность изображения, может оказывать негативное влияние на ваше зрение. Поэтому, при выборе монитора или телевизора следует обращать внимание на то, как организована подсветка того или иного устройства, ее достоинства и недостатки.

Для создания монитора или телевизора, который будет качественно передавать изображение, одной подсветки не достаточно. Большое значение имеет тип используемой ЖК-матрицы.

Например, мониторы построенные на IPS-матрице с CCFL лампами, будут превосходить по качеству изображения мониторы на TN-матрице с ЛЕД подсветкой. Поэтому при выборе монитора или телевизора нужно обращать внимание и на этот параметр.

Из-за непонимания, многие неверно воспринимают такие выражения, как LED-монитор или LED-телевизор (читается как «эл э ди телевизор»).

Термин «LED-телевизор» или «LED TV» был введен корпорацией Samsung, для выделения на фоне остальных моделей, новой линейки LCD-телевизоров, которые в качестве подсветки экрана используют светодиоды.

К непониманию этих терминов (в маркетинговых целях), очень большие усилия приложили производители мониторов и телевизоров, вводя нас в заблуждение и пытаясь заверить, что приставка LED в названии изделия, позволяет им выделить монитор или телевизор в новый тип, отличный от жидкокристаллической технологии.

На самом деле LED, это только вид подсветки жидкокристаллической матрицы дисплея и ни чего больше. Будь то монитор, телевизор или другое устройство.

Технология LED-подсветки, по сравнению с CCFL имеет несколько вариантов исполнения.

Обо всех типах, плюсах и минусах LED-подсветки я расскажу ниже, а сейчас перейдем к старой, но еще держащейся на плаву, технологии подсветки монитора CCFL лампами.

Подсветка ЖК-матрицы CCFL лампами

Монитор c ccfl лампами

CCFL (Cold Cathode Fluorescent Lamps) – флуоресцентные лампы с холодным катодом. Ранее использовались лампы с горячим катодом HCFL, но из-за своей ненадежности и недолговечности были заменены на CCFL.
Лампы CCFL представляют собой те же лампы дневного света, только уменьшенного размера. Принцип работы у них такой же. На внутреннюю поверхность лампы нанесен слой люминофора, а сама она заполнена смесью инертного газа с парами ртути. При подаче напряжения пары ртути взаимодействуют с люминофором, и он начинает светиться.

Подсветка матрицы дисплея CCFL лампами может быть организована следующими способами ⇒

  1. Расположение ламп сверху и снизу монитора
  2. Расположение ламп со всех четырех сторон монитора
  3. Расположение ламп параллельно всей поверхности монитора

Для равномерного распределения света всеми перечисленными способами, применяется специальная, адаптированная к каждому из них система рассеивания, состоящая из различных форм и размеров световодов и призм. Вариантов организации равномерного распределения света существует достаточно много.

Данный вид подсветки нашел широкое применение в производстве ЖК-мониторов, телевизоров и жидкокристаллических дисплеях для другой техники.

На сегодняшний день подсветка мониторов CCFL лампами изжила себя и считается устаревшей, но в некоторых областях ее еще успешно применяют.

Технология подсветки CCFL лампами очень сильно сдала позиции при производстве ЖК телевизоров (более 90% всех выпускаемых сегодня жидкокристаллических телевизоров, используют в качестве подсветки светодиоды), но в производстве профессиональных и полупрофессиональных мониторов для работы с изображениями, где очень важна точность цветопередачи, она еще продолжает присутствовать. В таких мониторах используются качественные, специально подобранные лампы, излучающие равномерный и однородный свет.

Светодиодная подсветка с использованием RGB LED может дать точность цветопередачи, которую обеспечивают CCFL лампы и даже лучше, но ее реализация пока значительно дороже.

У покупателя сегодня есть выбор. Прилично сэкономить и приобрести монитор с использованием старого типа подсветки, но по техническим характеристикам практически ничем не уступающим современным моделям, либо потратиться и выбрать один из лучших профессиональных современных мониторов с RGB LED подсветкой, который по сумме своих потребительских качеств будет лучше любого монитора, использующих в качестве подсветки CCFL лампы.

Так же небольшую нишу себе отвоевали лампы CCFL с высокой частотой работы, которые применяются в 3D мониторах. LED – подсветка так же используется и при их производстве, но ее исполнение сложнее и требует больше затрат.

LED-подсветка

лед подсветка

Самым современным способом подсветки ЖК-матриц мониторов и телевизоров являются светодиоды. Разработчики давно уже хотели массово внедрить технологию светодиодной подсветки, но мешали как технологические, так и экономические составляющие.

Обкатку подсветки светодиодами жидкокристаллических экранов начали с ноутбуков, потом, по мере удешевления и повышения качества, она перекочевала на рынок жидкокристаллических телевизоров, где и получила бурное развитие.

На сегодняшний день светодиодная подсветка полностью захватила рынок ноутбуков (сейчас найти новые модели ноутбуков с CCFL подсветкой невозможно). Полностью овладела телевизорами и продолжает свое победное шествие в сторону мониторов для ПК.

В чем же секрет такого взрывного роста использования в качестве подсветки светодиодов? Что Мы имеем сейчас, и чего ждать от технологии LED подсветки в будущем? На эти и другие вопросы, я отвечу далее…

Типы LED-подсветки

Всего существует два основных типа LED подсветки дисплеев ⇒

  1. Боковая (краевая или торцевая, Edge)
  2. Матричная (квадратно-гнездовой метод, ковровая, прямая или тыльная, Full-LED, Direct)

Так же подсветка дисплея может быть статической и динамической ⇒

  • Статическая — яркость подсветки матрицы регулируется одинаково по всей площади ЖК-панели
  • Динамическая – присутствует возможность управления подсветкой отдельных частей матрицы

Реальный показатель контрастности всех типов LED-подсветки не превышает 1000:1.

Боковая подсветка

Боковая краевая или торцевая Edge подсветка

Самый распространённый тип подсветки. В ней светодиоды могут быть расположены сверху, снизу, либо по всему периметру LCD матрицы. Зависит от технологии производства конкретного производителя. В данном типе подсветки применяются только белые светодиоды (White LED).

Для равномерного распространения света по всей площади ЖК-панели используются (как и в случае с CCFL лампами) специальная рассеивающая подложка.

По своим световым характеристикам (по сравнению с CCFL-подсветкой), может отличаться как в лучшую, так и в худшую сторону. Зависит от производителя, качества сборки конкретной модели и используемых элементов.

Главное преимущество боковой подсветки – дешевизна исполнения. Технология изготовления LCD-панелей с LED-подсветкой дешевле, чем с CCFL.

Так же на ее основе можно создавать очень тонкие модели мониторов и телевизоров. Значительно тоньше моделей на основе ламп.

Данную возможность очень умело используют продавцы, уверяя нас, что чем тоньше монитор или телевизор, тем он технологичнее и «круче». На самом деле это не всегда так, даже скорее всего почти никогда.

Такой тип подсветки применяется в очень популярных LED-телевизорах Samsung и LG (в телевизорах этой корпорации технология боковой подсветки называется Edge LED). Хотя эти производители выпускают модели телевизоров и с более продвинутыми типами подсветки.

Еще один несомненный плюс боковой подсветки, это низкое энергопотребление. Как по сравнению с CCFL, так и матричной (RGB или White LED).

Основными недостатками, при построении подсветки монитора с боковым размещением, является сложность достижения ее равномерности и абсолютная невозможность ей управлять динамически.

Она или включена, или выключена для всего экрана монитора, что негативно сказывается на изображении, особенно при быстрой смене темных и светлых участков.

Матричная подсветка

Direct LED

При построении матричной, ковровой, тыльной или Full-LED подсветки размещение светодиодов происходит равномерно по всей площади ЖК-панели. Реализация этого способа значительно дороже, так как сильно увеличивается необходимое количество LED-элементов.

Отличие матричной подсветки от боковой, заключается в намного более равномерном освещении матрицы дисплея, и возможностью динамически управлять подсветкой отдельных участков матрицы. Оба этих свойства позволяют добиться более насыщенного черного цвета и высокого соотношения динамического контраста, что положительным образом сказывается на получаемом изображении. Ниже на видео можно посмотреть, как это происходит.

Из-за технологии, количества и места размещения светодиодов, толщина мониторов и телевизоров больше, а энергопотребление выше, чем при использовании боковой подсветки.

Может быть реализована двумя способами ⇒

  1. При помощи белых светодиодов (White LED)
  2. При помощи цветных светодиодов (RGB LED)

Различие между этими двумя способами состоит в использовании различных по излучаемому свету светодиодов и их компоновке.

  • White LED светодиоды равномерно распределяются по площади, и в каждой ячейке используется только один светодиод
  • RGB LED светодиоды также равномерно распределяются по площади, но они организованы в так называемые «триады». Одна ячейка — три светодиода разного цвета. В зависимости от цвета выводимого изображения, этот участок подсвечивается нужного цвета светодиодом

Необходимость использования цветных светодиодов и их большего количества объясняет, почему мониторы и телевизоры, построенные на RGB LED, столь дороги и потребляют больше электроэнергии.

Если в первом случае может использоваться как статическое, так и динамическое управление подсветкой, то во втором применяется только динамическое.

Чем больше светодиодов используется в Full-LED подсветке, тем точнее можно регулировать яркость в каждой отдельной области экрана.

Обе технологии имеют как преимущества, так и недостатки. В первом случае ниже стоимость и меньший уровень энергопотребления. Во втором мы платим больше, за более качественную картинку.

Исходя из этого можно сделать вывод, что Direct led лучше Edge led .

LED или CCFL. Какая подсветка лучше?

Преимущества CCFL перед LED ⇒

  • Меньше устают глаза. Свет более привычен и мягок. (Верно только для мониторов бюджетного сектора и недорогих ноутбуков)
  • Лучшая цветопередача, за счёт использования качественных ламп с определённым диапазоном световых волн и лучшая равномерность подсветки. Особенно заметно в бюджетном секторе.

Как видим, преимущество CCFL ламп перед LED в принципе одно, это более подходящий для человеческого глаза диапазон световых волн. И в правду, поработав за монитором с LED-подсветкой, многие жалуются на усталость в глазах, и даже головные боли. Со временем этот недостаток будет устранен, благодаря налаженному дешевому производству светодиодов нужного спектра свечения.

Недостатки CCFL перед LED ⇒

  • Большая толщина (это распространяется только на изделия с боковой LED-подсветкой)
  • Меньшая долговечность ламп (CCFL

50 000 часов; LED

Преимущества LED перед CCFL ⇒

  • Меньшее энергопотребление (экономия доходит до 50%)
  • Увеличенный, почти вдвое, срок работы. Здесь надо обратить внимание на то, что CCFL лампы со временем теряют яркость, что приводит к ухудшению характеристик дисплея. Этот недостаток присутствует в светодиодах, но его временные рамки больше, а запас яркости позволяет его компенсировать
  • Более равномерная подсветка экрана. Верно только для Full-LED. При использовании боковой подсветки качество зависит от ее реализации
  • Более точное воспроизведение оттенков цветов (только для RGB LED)
  • Возможность создания очень тонких мониторов и телевизоров
  • Светодиоды набирают полную яркость сразу, после подачи питания (CCFL лампам требуется время на разогрев).

Недостатки LED перед CCFL ⇒

  • Более высокая цена, при равных характеристиках изображения
  • Бюджетные модели с LED-подсветкой, уступают в качестве передаваемого изображения моделям с CCFL лампами.

Выводы

Развитие светодиодной светотехники сейчас идет бурными темпами. Светодиодами заменяют различные типы ламп, где только можно: в автомобильной промышленности, производстве ламп для дома и улиц, рекламных объявлениях, электронике.

Все это очень положительно сказывается на стоимости светодиодов и конечной продукции с их применением. Сейчас уже не найти в продаже мониторы или телевизоры, в которых для подсветки используются лампы с холодным катодом.

В свою очередь производители должны порадовать нас более дешевой и качественной продукцией на основе LED-подсветки. За этой технологией будущее.

Идеальным вариантом является покупка устройства с Full-LED RGB подсветкой. Далее идет Full-White LED. Нужно выбрать максимально качественную модель устройства. И на последнем месте устройства с боковой LED-подсветкой и CCFL лампами. Желательно с данными типами подсветки не покупать телевизоры, так как диагональ их намного больше, чем у монитора, и все недостатки изображения будут очень сильно видны.

Читайте также: