Какая модуляция wi fi

Обновлено: 03.07.2024

Разбираемся вместе, что означают a/b/g/n, которые можно встретить при настройке Wi-Fi-роутера, и почему на эти характеристики следует обращать внимание при покупке устройства.

Бонус в конце статьи: режим на роутере, который увеличит скорость Интернета.

Самый первый стандарт не имел никакого буквенного обозначения. Он появился в 1996 году и использовался до 1999 года. Данные по воздуху при применении этого протокола скачивались со скоростью 1 Мбит/с. По современным меркам это чрезвычайно мало. Но тогда никто особо и не пользовался Интернетом. В те годы ещё даже WAP не был развит, а интернет-странички весили не более 20 Кб.

Стандарт использовался в строго специфических целях — для отладки оборудования и удаленной настройки компьютера.

Почему столько стандартов?

У каждой последующей технологии Wi-Fi собственные минусы и плюсы. Разработчики постоянно улучшают первоначальные параметры, пытаясь ускорить быстродействие и стабильность линии.

Разработкой стандартов официально занимаются в Институте электроники и электротехники (IEEE). Специалисты помогают компаниям выпускать совместимые устройства.

Основные разновидности Wi-Fi

802.11а

Относится к первым сертифицированным вариантам, разработанным в 1999 г. Отличием его от первоначального варианта стала возможность использовать частоту 5 ГГц, что позволило возрасти мощности потока до 54 Мбит/с.

  • скоростью передачи — не выше 11 Мбит/с;
  • радиусом действия — в 50 м;
  • частотой — 2,4 ГГц;
  • невысокой стоимостью по сравнению с другой аппаратурой.

802.11b

Начал применяться в 2001 г. При создании упор делался на показатели тактовой частоты и уровень пропускной способности. Вернулись к использованию частоты в 2,4 ГГц, потому что преимуществ у нее оказалось больше из-за пропускной способности. Разработчикам удалось добиться скорости потока данных в пределах 5,5 — 11 Мбит/с

  • скоростью при передаче данных — до 54 Мбит/с;
  • радиусом действия — до 30 м;
  • частотой — в 5,8 ГГц.

802.11g

Популярность версии связана с совместимостью со стандартом 802.11b и показателями скорости передачи информации. Впервые появилась в 2002 г., сейчас встречается реже. К его преимуществам относят:

  • невысокое энергопотребление;
  • неплохую дальность действия — до 50 м;
  • высокую пробивающую способность.

Устройство функционирует на частоте 2,4 ГГц, со скоростью в 54 Мбит/с.

802.11n

Является усовершенствованным типом 802.11b. Технические возможности устройств достигли уровня, который позволял перерабатывать более тяжелый контент, и обновление было очень кстати. Волны способны проходить через бетонные преграды. Позволяет нескольким аппаратам в доме работать одновременно стабильно и без сбоев.

Одновременно может поддерживать обе частоты, была внедрена разработка MIMO, что обеспечивает скорость передачи до 150 Мбит/с.

Главные характеристики 802.11n:

  • стабильной скоростью передачи пакета информации — в 200 Мбит/с;
  • радиусом действия — до 0,1 км;
  • частотой в 5 или 2,4 ГГц.

802.11ac

Относится к новейшим стандартам, позволяющим получить новое качество интернета. Преимущества:

Обзор технологии Wi-Fi

Wi-Fi остается одной из наиболее перспективных технологий беспроводной связи. Она стремительно развивается и принимает в себя новые беспроводные решения, позволяющие увеличить скорость передачи данных. Даже с развитием LTE-сетей, Wi-Fi не остается в стороне, а скорее получает дополнительную ветку развития, разгружая трафик в наиболее востребованных участках сети.

Wi-Fi для применения внутри помещений в рамках установленной законодательством мощности излучения не требует получения разрешения на использование частот. Кроме того, организация Wi-Fi-сети в условиях дома или небольшого офиса довольно проста, благодаря чему, зачастую, можно обойтись своими силами. Тем не менее, при проектировании сети с высокими требованиями к качеству связи, плотности покрытия и пропускной способности, как правило, прибегают к помощи специалистов. Развертывание Wi-Fi-сети занимает на порядок меньше времени по сравнению с прокладкой СКС до рабочих мест. Именно за простоту настройки, развертывания, относительную дешевизну и удобство, Wi-Fi по праву считают одной из перспективных и активно развивающихся технологий.

Требования к Wi-Fi-оборудованию описаны в наборе стандартов IEEE 802.11. С выпуском каждого нового стандарта, к 802.11 добавлялась буква, например, 802.11a/b/n и т.д. На сегодняшний день насчитывается несколько десятков разновидностей стандартов Wi-Fi. Не все стандарты были направлены на увеличение скорости передачи данных, некоторые из них затрагивают вопросы безопасности (например, 802.11i), другие включали описание работы роуминга (802.11r) и т.д.


При этом следует отметить, что не все перечисленные стандарты Wi-Fi служат для организации беспроводных локальных сетей как привычные нам роутеры, работающие в диапазонах 2.4 и 5 ГГц (стандарты 802.11 a/b/g/n/ac). Такие стандарты как 802.11ad и 802.11ay изначально планировалось выпустить для передачи данных на небольшие расстояния – от 1 до 10 метров – и, в перспективе, использовать их для организации высокоскоростных интерфейсов передачи данных, например для подключения мониторов к ПК и передачи изображения в формате 8K. Однако, в результате развития 5G-сетей и переходом в диапазон до 100 ГГц, устройства с поддержкой 802.11ad стали применяться для организации радиодоступа вне помещений (но для таких частот должны быть обеспечены условия прямой видимости).

Таким образом, у Wi-Fi большое будущее, которое позволит использовать данную технологию в совершенно разных приложениях. Несомненно, данная технология найдет свое место как в 5G-сетях, IoT-решениях, так и в VR-приложениях:

Обзор технологии Wi-Fi

Применимость различных стандартов Wi-Fi

Диапазон 2.4 ГГц

Большинство обычных клиентских маршрутизаторов и бытовых Wi-Fi-устройств работает в двух частотных диапазонах: 2,4 ГГц (802.11 b/g/n) и 5 ГГц (802.11 a/n/ac).

В диапазоне 2,4 ГГц стандартами определено 14 каналов. Некоторые из них могут быть недоступны в ряде стран (например, 14 канал разрешен для использования только в Японии). Каналы с номерами 1, 6 и 11 считаются полностью не пересекающимися по частотам и называются, как ни странно, "непересекающимися". Но на деле всегда остается "неучтенка", и если точки доступа расположены достаточно близко друг к другу, то и непересекающиеся каналы становятся пересекающимися:

Обзор технологии Wi-Fi

Каждый канал занимает ширину в 20 МГц. В некоторых случаях, стандартами разрешено использовать ширину канала равную 40 МГц (см. раздел Агрегация каналов). Номера каналов и их центральные частоты приведены на рисунке.

Обзор технологии Wi-Fi

Каналы Wi-Fi в диапазоне 2.4 ГГц

Использование непересекающихся каналов удобно в том случае, когда требуется организовать равномерное радиопокрытие таким образом, чтобы рядом расположенное оборудование не мешало друг другу, увеличивая тем самым стабильность и качество связи:

Обзор технологии Wi-Fi

Одним из недостатков диапазона 2,4 ГГц является его высокая загруженность и малое количество каналов. Помехи для Wi-Fi-сети могут создавать не только другие Wi-Fi-устройства и точки доступа, но и Bluetooth-устройства, работающие в этом же частотном диапазоне. Даже обычная бытовая СВЧ-печь способна очень сильно влиять на качество соединения в диапазоне 2,4 ГГц. Для минимизации взаимных влияний мощность Wi-Fi-передатчиков строго ограничена и регламентирована. Использование мощного передатчика требует получения разрешения в радиочастотном центре.

Более перспективным, с точки зрения меньшей загруженности и наличия большего числа каналов, является частотный диапазон 5 ГГц.

Диапазон 5 ГГц

В частотном диапазоне 5 ГГц доступно 23 неперекрывающихся канала по 20 МГц. Можно даже отметить, что 5-гигагерцовый диапазон состоит только из неперекрывающихся каналов, так как на такой частоте перекрытие создает существенные коллизии. Здесь уже можно использовать не только ширину 20/40 МГц, но и каналы шириной в 80 МГц (основной + вспомогательный). Ниже изображено расположение каналов в диапазоне 5 ГГц:

Обзор технологии Wi-Fi

  • Первый блок (Lower, нижний) каналов UNII-1 лежит в диапазоне частот от 5180 до 5240. При этом доступные непересекающиеся каналы по 20 МГц: 36, 40, 44, 48;
  • Второй блок (Middle, средний) UNII-2 лежит в диапазоне частот от 5260 до 5320. При этом доступные непересекающиеся каналы по 20 МГц: 52 56 60 64;
  • Третий блок (Extended, расширенный) UNII-2 лежит в диапазоне частот от 5500 до 5700. При этом доступные непересекающиеся каналы по 20 МГц: 100 104 108 112 116 120 124 128 132 136 140;
  • Четвертый блок UNII-3 - частота от 5745 до 5805, доступные непересекающиеся каналы по 20 МГц: 149 153 157 161;
  • Отдельно существуют 3 группы каналов: Japan (каналы: 8, 12, 16; диапазон 5040-5080) US Public Safety (каналы: 184, 188, 192, 196; диапазон 4920-4980) ISM (канал 165, частота 5825);
  • Стандартом 802.11ac предусмотрено использование групп UNII-1, UNII-2 (обе) и UNII-3, т.е. суммарно 23 канала. Благодаря чему, при использовании ширины канала в 80 МГц, доступно 5 непересекающихся каналов. Этой же спецификацией предусмотрена возможность объединения 2-х каналов по 80 МГц, что в итоге дает 160 МГц.

Carrier Aggregation - агрегация каналов

Под агрегацией следует понимать логическое объединение нескольких параллельных каналов передачи в один. Стандартами допускается использование полосы пропускания 40 МГц в диапазоне 2,4 ГГц. В диапазоне 5 ГГц ширина каналов может быть увеличена до 40, 80, 160 МГц с занятием частот соседних каналов для увеличения пропускной способности сети:

Обзор технологии Wi-Fi

Это и называется агрегированием. В случае использования широкой полосы пропускания, стабильность соединения может снижаться в силу взаимных влияний различных сетей друг на друга. Однако, несомненно, увеличение ширины канала позволяет многократно увеличить скорость передачи данных.

В этом разделе приводится описание технологий, которые нашли применение в беспроводных сетях стандарта 802.11 и позволили многократно увеличить скорости передачи данных – MIMO и Beamforming.

MIMO - Multiple Input Multiple Output

Технология MIMO оказала большое влияние на развитие Wi-Fi. Буквально несколько лет назад никто не думал о том, что будут существовать беспроводные устройства с пропускной способностью в сотни мегабит в секунду. Возникновение новых скоростных стандартов связи, в том числе 802.11n произошло во многом благодаря MIMO.

Наиболее простое определение, которое можно дать технологии MIMO – это многопотоковая передача данных. Аббревиатура переводится с английского как "несколько входов, несколько выходов". В отличие от своего "родителя" (Single Input / Single Output), в устройствах с поддержкой MIMO сигнал передается на одном радиоканале с помощью нескольких приемников и передатчиков.

Одной из основных характеристик технологии MIMO является количество антенн, работающих на прием и передачу. Обозначается NxM, где N - количество передающих антенн, а M - приемных. Например, MIMO типа 3х2 означает, что радиосистема имеет 3 передающие антенны и 2 принимающие. Кроме того, в MIMO применяется пространственное мультиплексирование. Иначе говоря, технология одновременной передачи данных нескольких пакетов по одному каналу. Благодаря такому "уплотнению" канала, его пропускную способность можно увеличить в два и более раз.

Как только технология беспроводной передачи данных Wi-Fi начала пользоваться большим спросом, быстро стали возрастать и требования к скорости. Впервые технология MIMO появилась в стандарте 802.11n, который дал возможность увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до 600 Мбит/сек. Стандарт 802.11n дает возможность применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц. Таким образом можно получить в несколько раз увеличенную пропускную способность каналов, которые используются в данный момент. С помощью объединения MIMO с более широкой полосой пропускания канала, получается достаточно мощный способ повышения физической скорости передачи.

Типы MIMO

Для различного количества пользователей, между которыми в одно и тоже время идет передача данных, существует два типа технологий:

SU-MIMO – система для одного пользователя (Single User - SU). Используется, когда в определенный промежуток времени потоки данных идут только к одному пользователю. Технология предоставляет многоканальные входные и выходные потоки одному устройству. Пока Wi-Fi-устройство адресата получает или принимает данные, другие пользователи находятся в ожидании.

MU-MIMO – система для нескольких пользователей (Multi User - MU). Позволяет нескольким пользователям принимать одновременно потоки данных. Она опирается на технологии SU-MIMO, но дает одновременную связь точки доступа с несколькими устройствами. MU-MIMO создает до 4 одновременных подключений, передавая по 4 потока данных одновременно. В результате пользователи не делят между собой соединение и улучшается производительность сети.

Обзор технологии Wi-Fi

Разница между технологиями SU и MU-MIMO

Особенности технологии

До появления стандарта 802.11ax, технология MU-MIMO работала только в диапазоне 5 ГГц. С появлением 802.11ax MU-MIMO стала доступной и на 2.4 ГГц. В продаже сетевого оборудования появляется все больше двухдиапазонных маршрутизаторов с поддержкой данной технологии.

MU-MIMO использует технологию Beamforming. Благодаря ей, сигналы распространяются не хаотично, а в направлении беспроводного устройства. Эта направленность позволяет увеличить дальность сигнала и повысить скорость передачи данных.

К сожалению, невозможно обслуживать бесконечное количество пользователей и потоков данных. Например, роутер с поддержкой трех потоков может одновременно работать только с тремя Wi-Fi-устройствами без задержек.

Чтобы пользоваться преимуществами метода, принимающее устройство должно иметь поддержку MU-MIMO. В данном случае, достаточно одной антенны и пользовательское устройство примет поток данных от роутера.

Компании, выпускающие смартфоны, роутеры, точки доступа и другие сетевые устройства уже заложили в них поддержку технологии. Как гарантируют производители, во многих современных устройствах, они учли также аппаратные требования для поддержки MU-MIMO, и теперь достаточно обновить ПО на своем гаджете, и пользователь получит поддержку данной технологии.

Сигнал, который передается с помощью архитектуры MU-MIMO, сложно перехватить, что повышает безопасность беспроводной сети.

На первых этапах развития технологии существовала трудность совмещения устройств, работающих с поддержкой MIMO и без нее. Однако на данный момент это уже не так актуально – практически каждый современный производитель беспроводного оборудования использует ее в своих устройствах. Также, одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков, являлась цена устройства.

Beamforming - автоматическое формирование луча

В последних моделях Wi-Fi-маршрутизаторов все чаще можно увидеть такую "опцию" как Beamforming. Beamforming, согласно техническим спецификациям современных Wi-Fi-устройств, это технология, позволяющая направлять излучаемый сигнал не во все стороны, как это происходит обычно, а "концентрированно" в сторону абонента. Это увеличивает отношение сигнал/шум, и как следствие - скорость передачи данных:

Обзор технологии Wi-Fi

Особенно это актуально в местах, где много различных перекрытий сигналов и множество других источников радиопомех, работающих в нелицензируемом диапазоне частот 2.4 и 5 ГГц.

Следует отметить, что главной сложностью при внедрении beamforming в устройства является сложность настройки антенн в сочетании с грамотным программным обеспечением. В недорогих моделях роутеров зачастую наличие beamforming является лишь маркетинговым ходом. Сильно повысить стабильность приема в отдаленных участках помещения не получится. Beamforming стал частью стандарта, начиная с 802.11ac, во втором поколении этих устройств (wave 2).

MCS в Wi-Fi сетях

  • Тип модуляции. Модуляция - это метод передачи данных. Чем сложнее модуляция, тем выше скорость передачи данных. Более сложные модуляции требуют хороших условий передачи, низкого уровня помех и отсутствия препятствий на пути прохождения сигнала.
  • Скорость кодирования информации. Этот параметр указывает на то, какая часть потока данных фактически используется для передачи "полезной" информации. Это значение выражается в виде дроби, например, 5/6 или 83,3% используемого потока данных.
  • Количество пространственных потоков. Используя технологию MIMO, в настоящее время возможно запускать до 8 пространственных потоков. Фактически это позволяет использовать одну и ту же область частотного пространства для передачи и приема нескольких потоков данных.
  • Ширина канала передачи. Это значение определяет, какая ширина канала будет использована для передачи. Ширина канала может быть максимум 40 МГц для диапазона 2.4 ГГц и 160 МГц для диапазона 5 ГГц. В диапазоне 60 ГГц ширина канала может составлять до 2 ГГц (стандарт 802.11ad/ay).
  • Длительность защитного интервала. Защитный интервал фактически представляет собой очень короткую паузу между передачей пакетов, чтобы можно было игнорировать любую ложную информацию. Более длительные интервалы защиты обеспечивают более надежную беспроводную связь.


Чем выше индекс MCS, тем "сложнее" вышеперечисленные параметры передачи. Значение индексов MCS для различных стандартов Wi-Fi приводится в таблице ниже. В расширенной виде с таблицей MCS можно ознакомиться по ссылке.


Итак, пусть изначально у нас есть некий стандартный роутер/точка доступа с официально разрешенными для нашей страны параметрами по мощности сигнала, который работает «в полную силу», то есть на мощности передатчика 100%. Напоминаю, это 23 дБм / 200 мВт в диапазоне 5ГГц или 20 дБм / 100 мВт в диапазоне 2,4 ГГц.

Примечание: единица измерения мощности беспроводного сигнала измеряется в дБм или мВт.

Излучаемый роутером/ТД сигнал распространяется вокруг, и попадает на приемные устройства, существенно ослабнув «по пути». Какой примерно сигнал мы имеем на стороне клиента (смартфона, планшета, ноутбука и т.д.)? Ну, к примеру, -50 дБм / 0.00001 мВт или -67 дБм / 0.0000002 мВт.

В то же время беспроводной клиент, который обычно представляет собой мобильное устройство, имеет задачу не только подключиться к сети, но и подольше проработать от батареи. Поэтому клиент не «выбрасывает» напрасно энергию в эфир. Мощность передатчика клиентов обычно находится на уровне 11-17 дБм (12.5-50 мВт). То есть, эта мощность в от 8 до 2 раз меньше, чем мощность сигнала роутера, если говорить об устройствах в 2,4 ГГц диапазоне.

реклама

При этом у беспроводных роутеров/ТД всегда есть CCA Threshold – порог слышимости сигнала, и если уровень сигнала не превышает этот порог, роутер/ТД считает его шумом. Предположим, этот порог - 82 дБм. Таким образом, наш условный роутер с 5 дБи антеннами будет работать с устройствами, уровень сигнала от которых в точке размещения роутера не менее -87 дБм (-87 дБм сигнал + 5 дБи коэффициент усиления антенны роутера = -82 дБм).

Примечание: разумеется, это чисто условный пример, в котором все параметры условно-типичные и даны для понимания ситуации; ваш роутер может иметь антенны с коэффициентом усиления отличающимся от 5 дБи, и иной порог, например - для определенного оборудования Ubiquiti в целом стабильная связь гарантируется при уровне сигнала до -70дБм; порог для сетей 5ГГц ниже чем для 2,4 ГГц даже на одном и том же оборудовании и т.п., но это нюансы, в которые мы углубляться не будем.

В целом для роутера и клиента можно руководствоваться простым правилом: при прочих равных условиях, сигнал теряет 6 дБ мощности (т.е. в 4 раза) при увеличении расстояния от передатчик в 2 раза.

Однако, как было сказано выше, мощность сигнала роутера/ТД обычно в 2-8 раз выше, чем на клиентах. И с отдалением от роутера/ТД неизбежно возникнет ситуация, когда клиент будет слышать сигнал роутера хорошо, а вот роутер будет слышать более слабый сигнал клиента на «грани» возможностей или не слышать вообще (так как уровень сигнала клиента будет опускаться за порог слышимости CCA Threshold). И возникнет странная ситуация, когда сигнал Wi-Fi от роутера на клиентском устройстве вроде бы ловится, но связи нет или она постоянно «отваливается».

реклама

Причина в асимметрии «силы» связи: к примеру, когда клиент мощностью 14 дБм слышит роутер/ТД на -84 дБм (-84 дБм + 2 дБи коэффициент усиления антенны клиента = условный порог слышимости -82 дБм), до роутера/ТД доходит сигнал от клиента лишь на уровне -90 дБм, что находится ниже порога слышимости. При указанных условиях беспроводная связь гарантированно оборвется.

То есть, в каналах беспроводной связи уже при типичных стандартных параметрах работы роутеров/ТД возникает существенная проблема со связью, вызванная асимметрией мощностей Wi-Fi излучателей. И если дополнительно поднять мощность сигнала на одной стороне (роутере/ТД), то проблема только усугубится. Перемещаясь с мобильными клиентами, вы все более часто будете сталкиваться с ситуацией, когда Wi-Fi роутер «теряет» устройства, и именно потому, что у него существенно более сильный сигнал. Клиент «услышит» роутер/ТД, а роутер клиента – нет. Вот почему серьезные производители оборудования не рекомендуют использовать Wi-Fi роутеры и точки доступа на максимальной мощности. Привожу в доказательство фрагмент презентации Cisco (с полной презентацией можно ознакомится здесь).


Даже наоборот, для устранения асимметрии и получения стабильной связи рекомендуется понизить мощность Wi-Fi передатчика в роутере/ТД.

Но если не мощность сигнала, то что же тогда определяет скорость и надежность Wi-Fi соединения?

Скорость подключения, которая ни о чем не говорит.

Скорость подключения по Wi-Fi определяют три параметра: тип модуляции, количество потоков (зависит от количества антенн) и ширина радиоканала.

Но «теоретическая» скорость подключения на основе вышеуказанных параметров имеет мало общего с реальной скоростью работы беспроводной сети. Что же оказывает влияние на эту скорость?

Дело в том, что модуляция в сети непостоянна. Самые прогрессивные модуляции на сегодня - 256 QAM и 1024 QAM (модуляция определяет, сколько бит передается в одном радиосимволе). Но! Эти плотные модуляции очень чувствительны к шуму. И достигаются они только при высоком соотношении сигнал/шум (SNR), когда клиент находится близко к Wi-Fi роутеру/ТД. С удалением от роутера/ТД растет шум, SNR падает, модуляция упрощается для надежности соединения и, как следствие – падает скорость связи. Плюс свою лепту в проблемы сети добавляет интерференция.

Интерференция и шум

Причиной коллизий из-за интерференции в Wi-Fi сетях являются беспроводные устройства, работающие на том же или близком канале. Это вполне могут быть соседские Wi-Fi устройства, а не ваши, и повлиять на их работу вы не сможете.

Примечание: в частности, поэтому рекомендуется использовать непересекающиеся каналы для соседних Wi-Fi роутеров; непересекающиеся каналы помогают избегать интерференции (хотя полностью проблему, конечно, не решают – проблемы растут по мере удаления от передатчиков).

Итак, интерференция – это помеха, вызываемая радиоволнами соседних Wi-Fi устройств.

Источником шума в беспроводных сетях являются не Wi-Fi устройства, использующие для работы тот же радиочастотный диапазон, что и Wi-Fi оборудование. Это различные Bluetooth устройства, 2,4ГГц и 5 ГГц ресиверы, радиотелефоны, микроволновые печи и другое оборудование.

Примечание: впрочем, поврежденные пакеты Wi-Fi и сигналы от устройств за пределами порога CCA Threshold тоже считаются шумами. Сигналы от Wi-Fi устройств, работающих отдаленно от роутера на том же канале, не считаются интерференцией, поскольку сигналы таких устройств не могут быть демодулированы.

Как уменьшить интерференцию и шум в Wi-Fi сети? Для домашнего пользователя я вижу только два варианта действий: перейти на другой канал и провести деагрегацию каналов. Так как объединение каналов уже само по себе ухудшает SNR: каждый дополнительный 20 MГЦ канал отнимает примерно 3dB у показателя SNR.

Примечание: уменьшение ширины канала в 10 раз увеличивает соотношение сигнал-шум в те же 10 раз. Вот почему в стандарте 802.11ax реализована идея разделения канала на дополнительные поднесущие. Сужение канала повышает соотношение сигнал/шум, что и дало возможность использовать прогрессивную кодировку 1024 QAM.

Но решающее влияние на быстродействие вашей сети будет оказывать не соотношение сигнал/шум, не интерференция как таковая, не мощность беспроводного сигнала, и уж тем более не количество беспроводных сетей вокруг, как ошибочно думают многие. Быстродействие вашей беспроводной сети будет в значительной степени определяться утилизацией канала. Ну, если вы живете не в тайге среди медведей, конечно. Там Wi-Fi каналы утлилизировать будет некому, кроме вас.

Проблемы утилизации

Что такое утилизация канала? И почему она сильно влияет на скорость работы Wi-Fi сети? Утилизация - это доля эфирного времени, которую занимают все работающие на данном канале устройства, и чьи сигналы могут быть демодулированы нашим Wi-Fi роутером/ТД, то есть энергия которых выше за CCA Threshold. По сути, пакеты нашей сети «втискиваются» в доступные узкие эфирные рамки между пакетами других сетей, работающих в этом же радиодиапазоне. Увы, но с максимальной производительностью наша беспроводная сеть работает лишь тогда, когда соседские сети на используемом канале не слишком активны или простаивают (а лучше всего – если они на нем отсутствуют). Вот почему настоятельно рекомендуется уходить на самые «незанятые» Wi-Fi радиоканалы. Там банально меньше «утилизаторов» сети.

Примечание: утилизация важна потому, что в Wi-Fi сетях доступ эфирному диапазону реализован по протоколу CSMA/CA (множественный доступ с контролем несущей и обнаружением коллизий), согласно которому беспроводные устройства периодически «слушают» свою частоту на канале, и если она занята, передача данных откладывается, а затем через некоторое время устройство снова делает попытку прослушивания частоты.

Отметим, что утилизация канала никак не влияет на отображаемую в системе скорость беспроводного подключения, но в то же время имеет огромное влияние на реальную практическую производительность беспроводной сети.

Живой пример: стоит одному из беспроводных пользователей поставить на закачку какой-нибудь крупный файл (не говоря уже о торрентах), не выставив разумных ограничений на темп загрузки, как скорость работы всех остальных пользователей на используемом таким юзером Wi-Fi канале существенно упадет, именно из-за утилизации канала. Причем неважно, подключены пользователи к этой же сети, или же к ближайшим сетям использующим тот же Wi-Fi канал. Более того, эффект негативно скажется и на соседних Wi-Fi каналах тоже.

Какой уровень утилизации канала может быть приемлем? Компания Cisco полагает что при утилизации канала более 80%, «ловить» в сети уже нечего. Нет, сеть, конечно, будет работать и при такой утилизации. Но о работе в чем-то близком к реалтайму речь уже не идет.


Низкая утилизация канала - отлично


Средняя утилизация канала - приемлемо

Примечание: не факт, что на канале, на котором меньше всего Wi-Fi сетей, самая низкая утилизация канала - все зависит от сценариев эксплуатации сетей. Установить канал(ы) с самой низкой утилизацией можно только эмпирическим путем.

Одним из эффективных средств уменьшения канальной утилизации (речь идет о средствах, доступных для домашних пользователей), являются: переход на другой канал, уменьшение количества подключенных клиентов в сети, особенно медленных (возможно стоит перевести их в отдельную сеть), уменьшения количества неподключенных Wi-Fi клиентов в зоне действия сети, а также - уменьшение радиуса действия беспроводного роутера, то есть уменьшение мощности передатчика (это отсечет самых дальних и медленных клиентов, которые долго занимают канал и «тормозят» сеть, а также дальние неподключенные устройства, которые регулярно отправляющие менеджмент-фреймы, в том числе не ваши устройства).

Примечание: для устранения конфликтов с соседними сетями Wi-Fi сейчас введен идентификатор BSS Color (Base Service Station), который помечает каждый пакет, что позволяет роутерам и клиентам определить, какие пакеты передаются от соседних сетей, и просто игнорировать их. Это снижает интерференцию от соседних беспроводных сетей и ускоряет передачу данных, но эта возможность доступна только в новейшем стандарте 802.11ах.

Итог

Как видим, использование роутера с большой мощностью Wi-Fi сигнала вовсе не означает, что ваша сеть будет работать лучше, станет надежнее или «дальнобойнее». Скорее наоборот. Чем более мощный Wi-Fi роутер/ТД и чем больше радиус его покрытия – тем больше интерференции и шумов такое устройство наловит, тем больше будет утилизация беспроводных каналов и меньше – производительность сети. Да еще и соседям такой гаджет будет создавать лишние помехи. Как-то так.

Wi-Fi

Беспроводные сети

Официальным стандартом на беспроводные сети является 802.11, который появился в 1997 году. Он предусматривает организацию обмена данными с помощью инфракрасного излучения и радиоволн. На сегодняшний день это постоянно развивающееся семейство спецификаций, описывающих принципы и параметры работы беспроводных сетей.

Основные стандарты

В наше время существует множество стандартов IEEE 802.11, но самыми популярными являются 4 из них, выделенные Инженерным институтом электротехники и радиотехники – 802.11a, b, g, n.

Основное отличие этих стандартов – скорость передачи данных. Например, для стандарта 11а, который сейчас уже считается устаревшим и практически не используется, характерна скорость в 54 Мбит/с при частоте работы 5,8 ГГц, а 11b обеспечивает соединение на скорости 11 Мбит/с при частоте в 2,4 ГГц.

802.11b

802.11b основан на методе широкополосной модуляции с прямым расширением спектра. Это первый сертифицированный стандарт, принятый в 1999 году, и все устройства, которые с ним совместимы, должны иметь соответствующую наклейку.

Характеристики у 802.11b следующие:

  • скорость передачи – до 11 Мбит/с;
  • радиус действия – до 50 м;
  • частота – 2,4 ГГц;
  • небольшая цена в сравнении с другими устройствами;
  • кодирование – Barker 11 и QPSK.

Весь диапазон стандарта делится на 3 независимых канала, что позволяет обеспечивать на одной территории работу сразу трех беспроводных сетей. Все продукты, работающие по этому стандарту, проходят сертификацию международной организации WECA.

802.11a

Этот стандарт разработали в качестве решения проблем предыдущей версии в 1999 году, однако применять его начали только с 2001-го. Используется в основном в США и Японии, в России и Европе стандарт не получил широкого распространения.

Разработчики делали упора на пропускную способность устройства и его тактовую частоту. Благодаря подобным изменениям в этой модификации отсутствует влияние других устройств на качество сигнала.

Характеристики 802.11а:

  • скорость передачи данных – до 54 Мбит/с;
  • радиус действия – 30 м;
  • частота – 5,8 ГГц;
  • отсутствие совместимости с 802.11b;
  • более высокая цена устройства;
  • кодирование – Convoltion Coding;
  • модуляции – BPSK, QPSK, 16-QAM, 64-QAM.

802.11g

Следующий стандарт обрел свою популярность за счет скорости передачи данных и совместимости с 802.11b. Утвержденный в 2002 году, он находится в пользовании и сегодня, но уже в меньшем количестве.

Основными преимуществами считаются более низкое потребление энергии, высокая пробивающая способность и дальность действия.

Настройка вай фай

Характеристики:

  • скорость передачи данных – до 54 Мбит/с;
  • радиус действия – до 50 м;
  • частота – 2,4 ГГц;
  • полная совместимость с 802.11b;
  • кодирование – Barker 11 и CCK;
  • модуляции – OFDM (с ортогональным частотным мультиплексированием) и PBCC (метод двоичного пакетного сверхточного кодирования).

802.11n

Стандарт беспроводных сетей последнего поколения, ратифицированный в 2009 году. Это усовершенствованная спецификация 802.11b, реализующая передачу данных в том же частотном диапазоне.

Превышает по скорости своих предшественников, обеспечивая скорость на уровне Fast Ethernet. В лабораторных условиях способен передавать данные со скоростью до 600 Мбит/с, используя для этого сразу 4 антенны по 150 Мбит/с.

В основе стандарта лежит технология OFDM-MIMO. Большая часть функционала была позаимствована у стандарта 802.11а, но в стандарте 802.11n имеется возможность применять частотные диапазоны и для других стандартов.

Характеристики:

  • скорость передачи данных – до 200 Мбит/с;
  • радиус действия – до 100 м;
  • частота – 2,4 ГГц или 5 ГГц;
  • совместимость с 802.11b и 802.11а.

Так как это новый стандарт, и он до сих пор развивается, возможно, проявление характерных особенностей – конфликт с оборудованием, которое поддерживает стандарт 802.11n только потому, что производители устройств разные.

802.11ac

Это самый новейший и технологичный стандарт, который предоставляет пользователям абсолютно новое качество Интернета. Основными преимуществами 802.11ас являются:

  1. Высокая скорость. Так как используются более широкие каналы и повышенная частота, то теоретическая скорость достигает 1,3 Гбит/с. На практике же она составляет до 600 Мбит/с. Также за один такт он передает большее количество данных.
  2. Увеличенное количество частот. Стандарт оснащен целым ассортиментом частот 5 ГГц. Адаптер с высоким диапазоном охватывает полосу частот до 380 МГц.
  3. Зона покрытия становится ещё больше. Также Wi-Fi подключение работает даже через бетонные и гипсокартонные стены, а все помехи от работы домашней техники и соседского Интернета никак не влияют на работу соединения.
  4. Новые технологии. Используется расширение MU-MIMO, обеспечивающее бесперебойную работу сразу нескольких устройств в сети.

Основные стандарты беспроводных сетей – видео-обзор

Вашему вниманию представлен видеоролик, в котором рассказано об основных стандартах Wi-Fi и их характеристиках, а также показана настройка стандартов на примере роутера TP-Link:

Дополнительные стандарты

Помимо основных, существуют дополнительные стандарты, использующиеся для сервисных функций.

802.11d

Стандарт, целью которого является подстраивание различных устройств под специфические условия страны. В регуляторном поле каждого государства диапазоны обладают значительными различиями. 802.11d позволяет регулировать полосы частот в устройствах от разных производителей при помощи специальных опций, которые введены в протоколы управления доступом к среде передачи.

802.11e

Предназначение данного стандарта связано с использованием мультимедиа. Принцип работы заключается в назначении приоритетов для разных видов трафиков, таких как аудио- и видео-приложениям. Кратко – он определяет качество отправляемых медиафайлов. Основными являются следующие приложения – VoIP и Streaming Multimedia.

802.11v

Данная технология позволяет создавать решения для усовершенствования модификаций 802.11. В стандарте должны быть поправки, направленные на улучшение систем управления сетями. Модернизация на MAC- и PHY-уровнях позволяет централизовать и упорядочить конфигурацию клиентских устройств, соединенных с сетью.

802.11f

Этот стандарт разработан с целью обеспечения аутентификации сетевого оборудования при перемещении компьютера пользователя с одной точки доступа к другой (между сегментами сети). При этом начинает действовать протокол обмена служебной информацией, необходимый для передачи данных между точками доступа. Таким образом, достигается эффективная организация работы распределенных беспроводных сетей.

802.11h

Стандарт разработали с целью эффективного управления мощностью излучения, выбором несущей частоты передачи и генерации нужных отчетов. 802.11h вносит некоторые новые алгоритмы в протокол доступа к МАС-адресу и в физический уровень стандарта 802.11а.

Смысл работы этих алгоритмов заключается в том, что когда они обнаруживают отраженные сигналы, то компьютеры беспроводной сети могут переходить в другой диапазон, понижать или увеличивать мощность передатчиков, что дает возможность организовывать работу уличных или офисных сетей более эффективно. То есть данный стандарт обеспечивает качественную связь при наличии помех.

802.11i

Стандарт, созданный для устранения недостатков в области безопасности предыдущих версий. 802.11i решает проблему защиты канального уровня и создает безопасные проводные сети любых масштабов. Разработали его в 2004 году.

802.11k

Стандарт, целью которого является реализация балансировки нагрузки в системе Wi-Fi. В беспроводной сети устройство абонента чаще всего соединяется с точкой доступа, обеспечивающей самый сильный сигнал, что может стать причиной перегрузки этой самой точки, если разом подключилось слишком много пользователей.

Чтобы такого не произошло, придумали стандарт 802.11k, который ограничивает количество допустимых пользователей и дает возможность подключаться к другим точкам, даже если у них более слабый сигнал. Таким образом, увеличивается пропускная способность сети за счет более эффективного использования ресурсов.

802.11y

Это дополнительный стандарт, использующийся для связи диапазона частот 3,65-3,70 ГГц. Предназначен для устройств последнего поколения, которые работают с внешними антеннами на скоростях до 54 Мбит/с на расстоянии до 5 км на открытом пространстве. Полностью этот стандарт не завершен.

802.11m

В этом стандарте собраны все поправки и исправления группы стандартов 802.11. Первый такой выпуск сделали в 2007 году, второй – в 2011 году.

802.11p

Обеспечивает взаимодействие оборудования, которое движется на скорости до 200 км/ч. с точками доступа на расстоянии до 1 км. Является частью стандарта WAVE, который определяет архитектуру и дополнительный набор служебных функций и интерфейсов, обеспечивающих безопасный механизм связи между движущимися транспортными средствами.

Wi fi на устройствах

Стандарт разработан для таких приложений как:

  • организация дорожного движения;
  • контроль безопасности движения;
  • автоматизированный сбор платежей;
  • навигация и маршрутизация транспортных средств.

802.11r

Стандарт позволяет определить быстрый автоматический роуминг устройств во время перехода точки доступа из одной зоны покрытия в другую. Он важен для мобильных/переносимых устройств – смартфонов, планшетов, ноутбуков.

До того, как стандарт появился, во время движения пользователь терял связь с одной точкой, искал другую и должен был повторять процедуру подключения заново.

802.11s

Помогает реализовывать полносвязные сети, в которых любое устройство может работать как маршрутизатором, так и точкой доступа. Например, если ближайшая точка доступа загружена, то все данные направляются к ближайшему загруженному узлу.

При этом пакет данных передается до тех пор, пока не достигнет нужного места назначения. Здесь введены новые протоколы, поддерживающие широковещательную и многоадресную передачу, а также одноадресную поставку.

802.11t

Используется для институализации процесса тестирования решений стандарта 802.11. Описывает методы тестирования, способы измерений и обработки результатов, требования к испытательному оборудованию.

802.11u

Определяет протоколы доступа, приоритета и запрета на работы с внешними сетями. То есть стандарт обеспечивает взаимодействие беспроводных и внутренних сетей.

На данный момент по этому стандарту происходит большое движение, как в части разработок решений, так и в части организации межсетевого роуминга.

Какой стандарт выбрать?

Все роутеры поддерживают протоколы b/g/n. Двухдиапазонный роутер поддерживает стандарт ас. Все современные устройства – телефоны, планшеты, ноутбуки – работают в этих режимах в диапазоне 2,4 и 5 ГГц.

Более старые устройства обычно не поддерживают стандарты ас и n, поэтому, если на вашем роутере установлен один из них, такой прибор, скорее всего, просто не сможет подключиться.

Оптимальным решением является выбор смешанного режима – b/g/n. Тогда у вас смогут подключаться как новые, так и старые устройства. Подобный режим уже заранее предустановлен на большинстве роутеров.

Но если старых телефонов и ноутбуков у вас нет, то лучше выставьте стандарт n с диапазоном 2,4 ГГц – это даст возможность увеличить скорость работы Интернета.

Пошаговые инструкции, как поменять стандарт

Каждый пользователь может выставить на своем устройстве интересующий его стандарт. Но в зависимости от модели, процедура немного меняется.

TP-Link

Чтобы сменить режим на роутере марки TP-Link, следуйте следующей инструкции:

  • зайдите в настройки маршрутизатора (192.168.1.1 в адресной строке любого браузера – одинаково для всех моделей роутеров);
  • перейдите в раздел «Беспроводной режим» – «Настройки беспроводного режима» – «Режим»;
  • выберите нужный.

Выбрать нужный

Если у вас маршрутизатор двухдиапазонный, то чтобы сменить режим работы 5 ГГц перейдите в соответствующий раздел.

Чтобы получить на маршрутизаторе ASUS максимальную скорость, выполните следующие действия:

  • зайти в настройки роутера;
  • ввести данные для аутентификации;
  • зайдите в дополнительные настройки;
  • выберите подпункт «Беспроводная сеть», после чего откройте закладку «Общие»;
  • установите режим и ширину канала.

Установите режим

ZyXEL Keenetic

Чтобы сменить стандарт в этом роутере, зайдите в настройки, снизу перейдите в раздел под названием «Wi-Fi-сеть». Здесь вы увидите всплывающее меню «Стандарт». После того, как стандарт будет изменён, не забудьте нажать на кнопку «Применить» и перезагрузить устройство.

Сменить стандарт

D-Link

Чтобы поменять стандарт на D-Link, сделайте следующее:

  • в любом браузере откройте панель управления маршрутизатора по адресу 192.168.1.1;
  • зайдите в раздел «Wi-Fi»;
  • выберите пункт «Беспроводной режим» с 4-мя вариантами: 802.11 b/g/n mixed и отдельно n/b/g.

Беспроводной режим

Netis

Чтобы изменить стандарт Wi-Fi сети в роутере Netis, выполните следующие действия:

Сохраните настройки

Tenda

Необходимые настройки в этом роутере находятся в разделе «Беспроводной режим» – «Основные настройки» – пункт «Сетевой режим». Можно поставить как смешанный режим, так и отдельный.

Прогресс не стоит на месте и с каждым годом в сфере беспроводных сетей происходят новые открытия. Не так давно был презентован ещё один новейший стандарт, который благодаря своим характеристикам работает быстрее и качественнее, чем 802.11ас.

Технология Вай Фай простыми словами

Wi-Fi – это технология беспроводной локальной сети на основе стандартов IEEE 802.11. Большинство людей используют ее для подключения к интернету мобильников, телевизоров и ноутбуков, но также данная технология применяется и в локальных сетях организаций (для подключения беспроводного принтера, например), и при построении беспроводного видеонаблюдения или домофонии, и даже в умном доме, которому и посвящен данный сайт. В общем везде, где или нет возможности протянуть кабель или устройства не поддерживают проводное подключение.

В сети Wi-Fi зачастую используется два типа устройств – точка доступа и клиенты, которые к ней подключаются. В качестве точки обычно выступает роутер, но также точкой можно сделать и смартфон или ноутбук, раздав Wi-Fi с них.

Содержание:

Используемые частотные диапазоны Wi-Fi. Разница между 2.4 и 5 ГГц

Что лучше 2.4 или 5 ГГц

Передача Wi-Fi сигнала осуществляется при помощи радиоволн в частотных диапазонах 2.4 ГГц и 5 ГГц. Какую частоту Wi-Fi выбрать и какая разница между 2.4 и 5 ГГц? У каждого диапазона есть свои плюсы и минусы. Сети, которые работают на 2.4 ГГц обладают большей площадью покрытия по сравнению с сетями, работающими в диапазоне 5 ГГц. Меньшая дальность покрытия на пятерке связана с тем, что волны на высоких частотах затухают сильнее, а также с большей чувствительностью сигнала к различным препятствиям, что актуально в многоквартирных домах. Казалось бы, выставляй везде 2.4 и радуйся хорошему приему в любом уголке квартиры, но не тут-то было. Большое количество сетей в данном диапазоне создают помехи друг на друга, ухудшая качество сигнала, а соответственно и скорость соединения. И сетей этих действительно много – это и точки доступа соседей, и умные лампы, розетки и выключатели, и беспроводные камеры видеонаблюдения. Bluetooth-устройства, беспроводные клавиатуры, мышки и наушники, Zigbee датчики умного дома и даже микроволновки так же работают в диапазоне частот 2.4 ГГц.

Как проверить каналы Wi-Fi на загруженность

2.4 или 5 ГГц: что лучше? Все современные роутеры уже давно работают в двух частотных диапазонах одновременно, так что если вы живете в многоквартирном доме, то лучшим решением будет перекинуть на пятерку все поддерживающие ее устройства, а недостаток покрытия решить добавлением усилителей. В моем случае пятерка отлично покрывает двухкомнатную квартиру в монолитном доме, показывая близкие к максимальной от провайдера скорости в любой ее части, так что все лампочки и прочие устройства умного дома у меня висят на 2.4 (5 ГГц они не поддерживают), а все смартфоны – на пятерке.


Для использования сетей 5 ГГц и клиент и точка доступа должны их поддерживать.

Частотные каналы Wi-Fi. Частоты 802.11ac и 802.11n

Как уже было сказано выше, большое количество работающих вокруг сетей будет создавать помехи для вашего соединения. Для минимизации таких помех роутеры могут использовать разные частотные каналы для связи с устройствами. Что это значит? Возьмем, к примеру, частотный диапазон 2.4 ГГц (устройства на 802.11n), в него входят частоты от 2400 МГц до 2483.5 МГц (в Японии до 2495 МГц). Стандартная ширина канала, которую использует роутер для связи с устройствами в данном частотном диапазоне составляет 22 МГц и таких каналов при работе в 2.4 ГГц может быть до 14 шт. Точное значение зависит от страны – для США это 11, для России и Украины – 13, а для Японии – 14. Исходя из вышесказанного, получается, что тот же айфон, купленный в штатах, будет видеть только первые 11 каналов и если ваш роутер работает на 13, то смартфон его просто не увидит. Так что если ваше устройство не видит роутер, то зайдите в его (роутера) настройки и выберите любой канал из первых одиннадцати.

С точками доступа все проще – при первом запуске зачастую предлагается выбрать страну проживания и исходя из этого и будет программно ограничено количество каналов и мощность сигнала.

Как уже было сказано выше – всего в диапазоне от 2400 МГц до 2483.5 МГц имеется 13 каналов (японский 14, находящийся за пределами данного диапазона в расчет не берем). Как они там поместились, учитывая ширину каждого в 22 МГц? Все просто – центральная частота каждого следующего канала равна +5 МГц к центральной частоте предыдущего. Для наглядности приведу картинку:

Wi-Fi количество каналов в 2.4

Как видим, каждый канал пересекается с частью других и, соответственно, создает на них помехи. Например, точка работающая на 4 канале будет оказывать сильные помехи на 3 и 5 каналы и немного меньшие на 2 и 6. А вот если ваш роутер будет работать на первом, а два соседских на шестом и одиннадцатом каналах, то все они не будут создавать друг другу помехи, т к не будет пересечения каналов. Но это в теории, на практике они все же пересекаются, т к всегда остается “неучтенка” и, расположив рядом две точки с непересекающимися каналами, они будут создавать друг другу помехи. Выглядит это следующим образом:

Непересекающиеся каналы wifi 2.4

Как бы то ни было, в любом многоквартирном доме сейчас куда больше роутеров и трех непересекающихся каналов явно недостаточно. Можно легко поймать сигнал соседа слева, справа, сверху, снизу и даже через несколько этажей. Частично решить данный вопрос можно переходом на 802.11ac, работающий на 5 ГГц (при условии, что используемые устройства поддерживают данную частоту), тут и каналов больше и загруженность меньше. А учитывая меньшую дальность действия еще и не все соседские точки добьют до вашей квартиры. В России, согласно Постановлению Правительства РФ от 12 октября 2004 года № 539 “О порядке регистрации радиоэлектронных средств и высокочастотных устройств” (с изменениями на 22 декабря 2018 года) внутри помещений разрешено использовать частотные диапазоны 5150 – 5350 МГц и 5650 – 5850 МГц, что дает 17/8/4/1 (при 20/40/80/160 МГц соответственно) непересекающихся каналов в 5 ГГц:

Непересекающиеся каналы wifi 5 ГГц


Чтобы проверить каналы Wi-Fi на загруженность и найти среди них свободные можно воспользоваться специальным приложением для смартфонов Wi-Fi Analyzer. А для того, чтобы измерить скорость Wi-Fi соединения можно воспользоваться программой SpeedTest для смартфона или их сайтом для замера на ПК.

На что влияет ширина канала Wi-Fi? Все просто – чем шире канал, тем больше скорость передачи данных, но если вокруг будет много других сетей с пересекающимися с вами каналами, то и помех будет больше. Помехи – повышение значения уровня шума и уменьшение соотношения сигнал/шум. Как итог – уменьшение реальной скорости соединения.

Стандарты беспроводных сетей Wi-Fi

802.11 a/b/g/n/ac/ax скорость и год выпуска

Сети Wi-Fi описываются стандартами связи IEEE 802.11, берущими свое начало аж с 1997 года. Стандарты 802.11a и 802.11b появились в 1999 (выход первых устройств на 802.11a состоялся в 2001), 802.11g в 2003, 802.11n в 2009, 802.11ac в 2014 и 802.11ax в 2019. Немалое количество получается и что бы не запутаться во всем этом обычному пользователю, было принято решение дать стандартам альтернативные, простые для запоминания названия. Так в 2018 году и появились более удобные обозначения: 802.11n стал Wi-Fi 4, 802.11ac – Wi-Fi 5, а 802.11ax – Wi-Fi 6.

Четвертая версия (802.11n) работает в диапазонах 2.4 ГГц и 5 ГГц (при этом на 2.4 ГГц работает большинство устройств в данном стандарте) и наиболее распространена на данный момент. Максимальная теоретическая скорость 802.11n при использовании одной антенны – до 150 Мбит/с, а при использовании четырех – до 600 Мбит/с. Доступная ширина канала – 20 и 40 МГц.

Wi-Fi 5 (802.11ac), вышедший в 2013 году работает только на частоте 5 ГГц. Максимальная скорость 802.11ac при использовании восьми MU-MIMO антенн может доходить до 6,77 Гбит/с, а среди основных отличий от предыдущего стандарта можно выделить:

  • Поддержку каналов шириной 20, 40, 80 и 160 МГц.
  • Поддержку модуляции 256QAM, что дает увеличение скорости до 33% по сравнению с 64QAM, использующемся в Wi-Fi 4.
  • Поддержку до 8 пространственных потоков (Wi-Fi 4 поддерживает до 4).
  • Полноценно работающий между оборудованием разных производителей Beamforming.
  • Поддержку MU-MIMO (появилась во второй редакции стандарта 802.11ac (Wave 2)).

Последние две технологии будут рассмотрены более подробно чуть ниже.

Wi-Fi 6 (802.11ax) – последний вышедший на данный момент стандарт Wi-Fi. Количество поддерживающих его устройств все еще невелико, но оно постоянно увеличивается.

MIMO и Beamforming

Ну и напоследок хотелось бы рассказать про несколько технологий, применяемых в беспроводных сетях.

Что такое MIMO в роутере. SU-MIMO и MU-MIMO

MIMO – одно из самых важных нововведений стандарта Wi-Fi 802.11n. Если просто, то MIMO – это технология, позволяющая в один момент времени передавать или принимать несколько потоков данных с использованием нескольких антенн устройства. Больше потоков – выше скорость соединения.

Отличие MIMO от MU-MIMO

Существует два варианта MIMO: однопользовательский (SU-MIMO) и многопользовательский (MU-MIMO, впервые появившейся в стандарте 802.11ac Wave 2). В первом случае роутер в один момент времени отправляет данные только одному устройству, во втором – может отправлять данные нескольким пользователям одновременно.

Beamforming

Beamforming что это в роутере

Beamforming – технология формирования направленного луча в сторону подключенного клиента. Обычно сигнал транслируется во все стороны, создавая равномерную зону покрытия. Технология Beamforming позволяет маршрутизатору определить нахождение клиента в пространстве и сформировать сигнал в данном направлении. Изначально данный функционал появился в стандарте 802.11n, но из-за отсутствия стандартного способа реализации каждый производитель реализовывал ее по-своему и нормально она не работала. Начиная с 802.11ac был введен стандартный способ формирования диаграммы направленности, что позволило любым устройствам с поддержкой данной технологии корректно работать с любыми другими устройствами, так же ее поддерживающими.

Вам также может понравиться

Read more about the article Wi-Fi 6 802.11ax: Target Wake Time, BSS Coloring, OFDMA

Wi-Fi 6 802.11ax: Target Wake Time, BSS Coloring, OFDMA

Технология Zigbee в умном доме: компоненты, частота, каналы

Читайте также: