Классификация видов и архитектура персональных компьютеров и серверов

Обновлено: 04.07.2024

Наиболее часто при выборе компьютера для той или иной сферы применения используется такая характеристика, как проuзводительность, под которой понимается время, затрачиваемое компьютером для решения той или иной задачи. Понятие «производительность» определяет и некоторые другие характеристики компьютера, такие, например, как объем оперативной памяти. Вполне естественно, что компьютер с высокой скоростью обработки должен снабжаться большим объемом оперативной памяти, так как иначе его производительность будет ограничена необходимостью подкачки информации из более медленной внешней памяти. Можно считать, что производительность является некоторой интегрированной характеристикой, определяющей общую вычислительную мощность компьютера, и, соответственно, области его применения.

По производительности компьютеры можно условно разбить на три класса: суперкомпьютеры; мэйнфреймы; микрокомпьютеры.

Суперкомпьютеры – компьютеры с производительностью свыше 100 млн. операций в секунду. Применяются для решения таких задач, как моделирование физических процессов, гидрометеорология, космические исследования и других задач, которые требуют огромных объемов вычислений. Выполняются обычно по многопроцессорной архитектуре, имеют большой набор внешних устройств, и, как правило, выпускаются небольшими партиями для конкретной задачи или конкретного заказчика. Обычно важность решаемой задачи такова, что основным параметром суперкомпьютера является его высокая производительность, а такие параметры, как стоимость, размеры или вес, не являются определяющими.

Мэйнфреймы – компьютеры с производительностью от 10 до 100 млн. операций в секунду. Они используются для решения таких задач, как хранение, поиск и обработка больших массивов данных, построение трехмерной анимационной графики, создание рекламных роликов, выполняют роль узлов глобальной сети, используемой торговыми или компьютерными фирмами с большим потоком запросов. Выполняются по многопроцессорной архитектуре с общей шиной и небольшим числом мощных процессоров. Конструктивно выполняются в виде одной стойки или в настольном варианте. Стоимость мэйнфреймов колеблется от тридцати до трехсот тысяч долларов.

Микрокомпьютеры – компактные компьютеры универсального назначения, в том числе и для бытовых целей, имеющие производительность до 10 млн. операций в секунду. Микрокомпьютеры, или персональные компьютеры, можно классифицировать по конструктивным особенностям: стационарные (настольные) и переносные. Переносные компьютеры, в свою очередь, можно разделить на портативные (laptop), блокноты (notebook) и карманные (Palmtop). Портативные компьютеры по размеру близки к обычному портфелю, они, в настоящее время, уступают место более компактным. Блокноты по размеру близки к книге крупного формата и имеют массу около 3 кг . Такие компьютеры имеют встроенные аккумуляторы, позволяющие работать без сетевого напряжения. В настоящее время имеются полноцветные жидкокристаллические мониторы, не уступающие по качеству мониторам стационарных компьютеров. Карманные компьютеры в настоящее время являются самыми маленькими персональными компьютерами. Они не имеют внешней памяти на магнитных дисках, она заменена на энергонезависимую электронную память. Эта память может перезаписываться при помощи линии связи с настольным компьютером. Карманный компьютер можно использовать как словарь-переводчик или записную книгу.

Функциональная организация персонального компьютера

Центральный процессор

Центральный nроцессор (ЦП) – функционально-законченное программно-управляемое устройство обработки информации, выполненное на одной или нескольких СБИС. В современных персональных компьютерах разных фирм применяются процессоры двух основных архитектур:

полная система команд переменной длины - Complex Instruction Set Computer (CISC); сокращенный набор команд фиксированной длины - Reduced Instruction Set Computer (RISC).

Весь ряд процессоров фирмы Intel, устанавливаемых в персональные компьютеры IВM, имеют архитектуру CISC, а процессоры Motorola, используемые фирмой Apple для своих персональных компьютеров, имеют архитектуру RISC. Обе архитектуры имеют свои преимущества и недостатки. Так СISС-процессоры имеют обширный набор команд (до 400), из которых программист может выбрать команду, наиболее подходящую ему в данном случае. Недостатком этой архитектуры является то, что большой набор команд усложняет внутреннее устройство управления процессором, увеличивает время ис­полнения команды на микропрограммном уровне. Команды имеют различную длину и время исполнения.

RISС-архитектура имеет ограниченный набор команд, и каждая команда выполняется за один такт работы процессора. Небольшое число команд упрощает устройство управления процессора. К недостаткам RISС-архитектуры можно отнести то, что если требуемой команды в наборе нет, программист вынужден реализовать ее с помощью нескольких команд из имеющегося набора, увеличивая размер программного кода.

1

Упрощенная схема процессора, отражающая основные особенности архитектуры микроуровня, приведена на рис. 1. Наиболее сложным функциональным устройством процессора является устройство управления выполнением команд. Оно содержит:

буфер команд, который хранит одну или несколько очередных команд программы; читает следующие команды из запоминающего устройства, пока выполняется очередная команда, уменьшая время ее выборки из памяти; дешифратор команд расшифровывает код операции очередной команды и преобразует его в адрес начала микропрограммы, которая реализует исполнение команды; управление выборкой очередной микрокоманды представляет собой небольшой процессор, работающий по принципу фон Неймана, имеет свой счетчик микрокоманд, который автоматически вы­бирает очередную микрокоманду из ПЗУ микрокоманд; постоянное запоминающее устройство (ПЗУ) микрокоманд – это запоминающее устройство, в которое информация записывается однократно и затем может только считываться; отличительной особенностью ПЗУ является то, что записанная в него информация сохраняется сколь угодно долго и не требует постоянного питающего напряжения.

Поступивший от дешифратора команд адрес записывается в счетчик микрокоманд устройства выборки, и начинается процесс обработки последовательности микрокоманд. Каждый разряд микрокоманды связан с одним управляющим входом какого-либо функционального устройства. Так, например, управляющие входы регистра хранения «Сброс», «Запись», «Чтение» соединены с соответствующими разрядами микрокоманды. Общее число разрядов микрокоманды может составлять от нескольких сотен до нескольких тысяч и равно общему числу управляющих входов всех функциональных устройств процессора. Часть разрядов микрокоманды подается на устройство управления выборкой очередной микрокоманды и используется для организации условных переходов и циклов, так как алгоритмы обработки команд могут быть достаточно сложными.

Выборка очередной микрокоманды осуществляется через определенный интервал времени, который, в свою очередь, зависит от времени выполнения предыдущей микрокоманды. Частота, с которой осуществляется выборка микрокоманд, называется тактовой частотой процессора. Тактовая частота является важной характеристикой процессора, так как определяет скорость выполнения процес­сором команд, и, в конечном итоге, быстродействие процессора.

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ состоит из нескольких специальных регистров, полноразрядного сумматора и схем местного управления.

Регистры общего назначения (РОН) используются для временного хранения операндов исполняемой команды и результатов вычислений, а также хранят адреса ячеек памяти или портов ввода-выво­да для команд, обращающихся к памяти и внешним устройствам. Необходимо отметить, что если операнды команды хранятся в РОН, то время выполнения команды значительно сокращается. Одна из причин, почему программисты иногда обращаются к программированию на языке машинных команд, это наиболее полное использование РОН для получения максимального быстродействия при выполнении программ, критичных по времени.

Рассмотрим кратко характеристики процессоров, используемых в современных ПК типа IВM РС. Процессоры для этих ПК выпускают многие фирмы, но законодателем моды здесь является фирма Intel. Ее последней разработкой является процессор Pentium 4, выпуск которых начат в конце 2001 г . К основным особенностям архитектуры Pentium 4 можно отнести следующие:

в систему команд добавлены новые команды, ориентированные на работу с видео- и аудиопотоками; имеется специальный внутренний кэш, размером 256 Кбайт, который работает на тактовой частоте процессора, и имеет собственную шину связи с процессором, обеспечивающую скорость обмена 48 Гбайт/С; внутренняя микроархитектура процессора базируется на двух параллельно работающих конвейерах команд (суперскалярная архитектура), которые исполняют сразу несколько команд в разных фазах обработки (чтение, дешифрация, загрузка операндов, исполнение), конвейеры заканчиваются двумя АЛУ, работающими на удвоенной частоте процессора для коротких арифметических и логических команд, и АЛУ для выполнения медленных команд; процессор работает на частотах 1500-3000 МГц и содержит около 42 млн. транзисторов.

Фирма Intel поставляет упрощенные варианты процессоров Pentium 4 под названием Celeron, который в два раза дешевле базового варианта процессора. Однако, следует отметить, что последние модели процессора Celeron ни в чем не уступают «старшему брату» и даже в некоторых случаях превосходят его.

Фирма AMD (Advanced Micro Devices) выпускает процессоры, совместимые по системе команд с Intel Pentium 4 - Athlon (К7). Этот процессор выполнен по суперскалярной архитектуре с тремя конвейерами команд, работающими параллельно и способными обрабатывать до девяти инструкций за один цикл работы процессора. Тестирование процессора К7 и его сравнение с Pentium 4 показывает, что К7 не уступает ему и даже превосходит его в некоторых случаях. Стоимость процессора Athlon на 20-30 % дешевле процессора Intel . Процессор К7 требует для своей работы собственной общей шины, стандарт которой отличается от стандарта шины РСI, которая является основной для процессора Pentium 4. Поэтому замена одного типа процессора другим требует и замены системной платы, на которой расположен набор микросхем основных функциональных устройств ПК.

Оперативное запоминающее устройство

Другим важным функциональным узлом компьютера является запоминающее устройство, или память. Память, в которой хранятся исполняемые программы и данные, называется оперативным запоминающим устройством (ОЗУ), или RAМ ( Random Access Memorу) – памятью со свободным доступом. ОЗУ позволяет записывать и считывать информацию из ячейки, обращаясь к ней по ее номеру или адресу. Ячейка памяти имеет стандартное число двоичных разрядов. В настоящее время стандартный размер ячейки ОЗУ равняется одному байту. Информация в ОЗУ сохраняется все время, пока на схемы памяти подается питание, т.е. она является энергозависимой.

Существует два вида ОЗУ, отличающиеся техническими характеристиками: динамическое ОЗУ, или DRAM ( Dynamic RAM), и статическое ОЗУ, или SRAM ( Static RAM). Разряд динамического ОЗУ построен на одном транзисторе и конденсаторе, наличие или отсут­ствие заряда на котором определяет значение, записанное в данном бите. При записи или чтении информации из такой ячейки требуется время для накопления (стекания) заряда на конденсаторе. Поэтому быстродействие динамического ОЗУ на порядок ниже, чем у статического ОЗУ, разряд которого представляет собой триггер на четырех или шести транзисторах. Однако из-за большего числа элементов на один разряд в одну СБИС статического ОЗУ помешается гораздо меньше элементов, чем у динамического ОЗУ. Например, современные СБИС динамических ОЗУ способны хранить 256-1024 Мбайт информации, а схемы статических ОЗУ только 256-512 Кбайт. Кроме этого статические ОЗУ более энергоемки и значительно дороже. Обычно, в качестве оперативной или видеопамяти используется динамическое ОЗУ. Статическое ОЗУ используется в качестве небольшой буферной сверхбыстродействующей памяти. В кэш-па­мять из динамической памяти заносятся команды и данные, которые процессор будет выполнять в данный момент.

Скорость работы ОЗУ ниже, чем быстродействие процессора, поэтому применяются различные методы для повышения ее произ­водительности. Одним из способов увеличения быстродействия динамического ОЗУ является размещение в одном корпусе микросхе­мы СБИС нескольких модулей памяти с чередованием адресов. Байт с нулевым адресом находится в первом модуле, байт с первым адресом во втором модуле, байт со вторым адресом в первом модуле и т.д. Поскольку обращение к памяти состоит из нескольких этапов: установка адреса, выбор ячейки, чтение, восстановление, то эти этапы можно совместить во времени для разных модулей. Другим способом увеличения быстродействия является чтение из памяти со­держимого ячейки с заданным адресом и нескольких ячеек, расположенных рядом. Они сохраняются в специальных регистрах - защелках. Если следующий адрес указывает на одну из уже считанных ячеек, то ее содержимое читается из защелки.

Несмотря на разработку новых типов схем динамических ОЗУ, снижающую .время обращения к ним, это время все еще остается значительным и сдерживает дальнейшее увеличение производительности процессора. Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта память называется кэш-памятью (от англ. Cache – запас). Время обращения к данным в кэш-памяти на порядок ниже, чем у ОЗУ, и сравнимо со скоростью работы самого· процессора.

Запись в кэш-память осуществляется параллельно с запросом процессора к ОЗУ. Данные, выбираемые процессором, одновременно копируются и в кэш-память. Если процессор повторно обратится к тем же данным, то они будут считаны уже из кэш-памяти. Такая же операция происходит и при записи процессором данных в память. Они записываются в кэш-память, а затем в интервалы, когда шина свободна, переписываются в ОЗУ. Современные процессоры имеют встроенную кэш-память, которая находится внутри процессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, кэш-память делится на уровни. На кристалле самого процессора находится кэш-память первого уровня, она имеет объем порядка 16-128 Кбайт и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-память второго уровня, которая имеет объем порядка 256 Кбайт - 2 Мбайта. И, наконец, кэш-память третьего уровня расположена на системной плате, ее объем может составлять 16-1000 Мбайт.

Управление записью и считыванием данных в кэш-память выполняется автоматически. Когда кэш-память полностью заполняется, то для записи последующих данных устройство управления кэш- памяти по специальному алгоритму автоматически удаляет те данные, которые реже всего использовались процессором на текущий момент. использование процессором кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.

В одном адресном пространстве с ОЗУ находится специальная память, предназначенная для постоянного хранения таких программ, как тестирование и начальная загрузка компьютера, управление внешними устройствами. Она является энергонезависимой, т. е. сохраняет записанную информацию при отсутствии напряжения питания. Такая память называется постоянным запоминающим устройством (ПЗУ) или ROM ( Read Only Memory ). Постоянные запоминающие устройства можно разделить по способу записи в них информации на следующие категории:

ПЗУ, программируемые однократно. Программируются при изготовлении и не позволяют изменять записанную в них инфор­мацию.

Перепрограммируемые ПЗУ (ППЗУ). Позволяют перепрограммировать их многократно. Стирание хранящейся в ППЗУ информации осуществляется или засветкой полупроводникового кристалла ультрафиолетовым излучением, или электрическим сигналом повышенной мощности, для этого в корпусе микросхемы предусматривается специальное окно, закрытое кварцевым стеклом.

Внутренние шины передачи информации

Общая шина, наряду с центральным процессором и запоминающим устройством, во многом определяет производительность работы компьютера, так как обеспечивает обмен информацией между функциональными узлами. Общая шина делится на три отдельные шины по типу передаваемой информации: шина адреса, шина данных, шина управления. Каждая шина характеризуется шириной – числом параллельных проводников для передачи информации. Другим важным параметром шины является тактовая частота шины – это частота, на которой работает контроллер шины при формировании циклов передачи информации.

Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Ширина шины адреса определяет максимальное количество ячеек, которое она может напрямую адресовать. Если ширина шины адреса равна n, то количество адресуемой памяти равно

Каждый логический узел компьютера выполняет свои функции.

Центральный процессор 1 — электронный блок либо интегральная схема, исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

hello_html_m55fb894a.jpg

Рисунок 1 – Процессор

обработка данных (выполнение над ними арифметических и логических операций);

управление всеми остальными устройствами компьютера.

Тактовая частота (в МГц, ГГц) и подразумевает под собой количество тактов (вычислений) в секунду.

Частота шины – тактовая частота (в МГц), с которой происходит обмен данными между процессором и системной шиной материнской платы.

Множитель – коэффициент умножения, на основании которого производится расчет конечной тактовой частоты процессора, методом умножения частоты шины на коэффициент (множитель).

Разрядность (32/64 bit) — максимальное количество бит информации, которые процессор может обрабатывать и передавать одновременно.

Кэш-память первого уровня, L1 — это блок высокоскоростной памяти, который расположен на ядре процессора, в него помещаются данные из оперативной памяти. Сохранение основных команд в кэше L1 повышает быстродействие процессора, так как обработка данных из кэша происходит быстрее, чем при непосредственном взаимодействии с ОЗУ.

Кэш-память второго уровня, L2 — это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1, однако имеющий более низкую скорость и больший объем.

Кэш-память третьего уровня обычно присутствует в серверных процессорах или специальных линейках для настольных ПК.

Ядро – определяет большинство параметров центрального процессора: тип сокета, диапазон рабочих частот и частоту работы FSB. характеризуется следующими параметрами:

Техпроцесс Масштаб технологии (мкм), которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора.

Напряжение, которое необходимо процессору для работы и характеризует энергопотребление.

Тепловыделение – мощность (Вт), которую должна отводить система охлаждения, чтобы обеспечить нормальную работу процессора.

Тип сокета – то есть разъём для установки процессора на материнской плате.

Оперативная память 2 или оперативное запоминающее устройство (ОЗУ) — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Рисунок 2 – Оперативная память

Функции оперативной памяти:

прием информации от других устройств;

передача информации по запросу в другие устройства компьютера.

Характеристики оперативной памяти:

тип DDR — 1, 2, 3, 4;

тайминги – длительность импульсов и пауз обновления ячеек памяти;

тактовая частота оперативной памяти — частота в МГц (количество импульсов в секунду), с которой работает оперативная память;

тактовая частота шины — частота канала, по которому идёт обмен данными между оперативной памятью и процессором;

пропускная способность — это сколько за секунду времени может быть «пропущено» данных через плату оперативной памяти;

Жёсткий диск, винчестер (накопитель на жёстких магнитных дисках, или НЖМД) 3 — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.

Винчестер является основным накопителем данных в большинстве компьютеров. Именно на жёсткий диск устанавливается операционная система или другое программное обеспечение.

hello_html_55daf82.jpg

Рисунок 3 – Жёсткий диск

Характеристики жёстких дисков:

скорость вращения шпинделя;

наработка на отказ;

среднее время ожидания;

энергопотребление и тепловыделение.

Видеокарта 4 — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.

hello_html_397f50b4.jpg

Рисунок 4 – Видеокарта

производитель видеопроцессора (GPU);

частота GPU, МГц;

количество занимаемых слотов на материнской плате;

объем видеопамяти, ГБ;

тактовая частота видеопамяти, МГц;

шина обмена данными с памятью, бит;

поддержка SLI и CrossFire;

поддержка разных версий DirectX;

необходимость дополнительного питания.

В основе архитектуры современных ЭВМ лежит магистрально-модульный принцип (рис. 26), который позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Он опирается на шинный принцип обмена информацией между модулями

hello_html_m5b7f3863.jpg

Рисунок 5 – Магистрально-модульный принцип построения компьютера

Системная шина или магистраль компьютера включает в себя три многоразрядные шины:

шину данных – для передачи различных данных между устройствами компьютера;

шину адреса – для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода;

шину управления, которая включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т. д.

Основой построения модульного устройства компьютера является материнская (или системная) плата 5 — печатная плата, которая содержит основную часть устройства (рис. 6).

hello_html_79888f61.jpg

Рисунок 6 – Материнская плата

На системной (материнской) плате размещаются:

генератор тактовых импульсов;

контроллеры внешних устройств;

звуковая и видеокарты;

Многообразие компьютеров

В настоящее время рынок персональных компьютеров представлен огромным количеством моделей различных конфигураций. Основными факторами, влияющими на дальнейшее развитие компьютерной индустрии, станет снижение цен, появление в этом сегменте рынка все большего числа производителей. Компьютерный бизнес — одна из самых динамично развивающихся сфер как российской, так и мировой экономики.

Также положительную динамику рынка персональных компьютеров связывают с глобальной «мобилизацией» потребителей. Сегодня все больше рядовых пользователей переходят с громоздких настольных машин на портативные ПК — например, ноутбуки и нетбуки. Немудрено, что при таком невероятном многообразии компьютеров пользователю практически невозможно выбрать персональный компьютер самостоятельно.

Существует различные системы классификации ЭВМ:

по производительности и быстродействию;

по уровню специализации;

по типу используемого процессора;

по особенностям архитектуры;

Рассмотрим одну из таких классификаций.

1. Персональные компьютеры

1.1 Стационарные компьютеры. Занимают постоянное место, например, компьютерный стол. Обладают большими вычислительными мощностями чем переносные гаджеты. Выделим основные виды подобных устройств:

Десктопы. Самые мощные и производительные персональные компьютеры, основным компонентом которого является системный блок, занимающий постоянное место. К блоку подключаются периферийные устройства – клавиатура, мышь, монитор и прочее. Такое устройство является модульным, то есть отдельные его части подлежат замене, что позволяет постоянно обновлять и улучшать показатели работы компьютера.

Неттопы. По сути это те же десктопы, но они обладают меньшими габаритами и более экономным энергопотреблением. Их производительность меньше, но для некоторых задач она не настолько важна, а вот отсутствие шума для некоторых покупателей является приоритетом. Такой девайс занимает меньше места и его значительно проще разместить в домашних или офисных условиях, что также имеет высокую ценность в некоторых ситуациях.

Моноблоки. У данного вида стационарных ПК отсутствует видимый системный блок – все его компоненты размещены в мониторе, который так же служит корпусом для комплектующих. Такие устройства обладают высокой эстетичностью и меньшими требованиями к наличию свободного места, а топовые моноблоки практически не уступают по характеристикам привычным десктопам.

1.2. Портативные компьютеры – переносные персональные компьютеры, имеют высокие требования к мобильности конструкции и ее весу, способны работать в автономном режиме, для увеличения которого производители зачастую жертвуют производительностью системы. Этот вид ПК классифицируют следующим образом:

Ноутбуки – переносные компьютеры, оснащенные батареей, которая позволяет устройство работать без подключения к электрической сети. В одном корпусе такого гаджета одновременно находятся все необходимые элементы – монитор, клавиатура, процессор и прочая начинка.

Нетбуки – это компактные ноутбуки, которые приносят производительность в жертву легкости веса и упрощения мобильности, они отлично подходят для тех, кто любит работать не только за определенным рабочим местом, но и буквально где придется – в поезде, кафе или библиотеке.

Планшеты – нечто среднее между смартфонами и ноутбуками. Обладают довольной большой диагональю экрана порядка 10 дюймов, весят заметно меньше ноутбуков. Управляются посредством сенсорного дисплея, хотя, например, планшетные ноутбуки обладают полноценной клавиатурой.

Карманные компьютеры и смартфоны. Форм-фактор КПК был крайне популярен на заре нулевых, когда мобильные телефоны еще не предоставляли широких возможностей. Пришедшие на смену КПК смартфоны проигрывают в производительности более тяжелым и мощным ноутбукам, зато они имеют неоспоримое достоинство – они умещаются в карман и их всегда можно иметь под рукой.

2. Вычислительные серверы – благодаря таким компьютерам обеспечивается доступ к сетям, в том числе и интернету. Все файлы и информация, которую пользователь видит на экране монитора при веб-серфинге, хранится на таких серверах. Для таких компьютеров огромную роль играет производительность, но есть и более важная характеристика подобных систем – надежность. Вычислительные серверы должны без сбоев работать весь срок своей службы. Такие типы компьютеров всегда имеют резервные копии данных, что сказывается на общей концепции их архитектуры.

В основе такой аппаратуры лежит параллельная обработка информации, потому серверы стали пионерами в развитии многопроцессорности и многоядерности, которая сегодня используется уже повсеместно.

3. Суперкомпьютеры –профессиональные машины с наиболее высокой на сегодняшний день производительностью, они используются в научных лабораториях и крупном бизнесе. Такое устройство представляет собой целый комплекс компьютерных устройств, который может занимать огромные помещения. Каждый составной элемент подобной махины отвечает за свою конкретную задачу, подобная структуризация и векторная организация позволяют решать самые сложные проблемы, требующие невероятного объема расчетов.

4. Другие виды – многие устройства, которые привычно воспринимаются опосредовано от компьютерной составляющей, например, банкоматы или игровые приставки, также по большому счету являются компьютерами. Бытовая техника тоже имеет в себе встроенные компьютеры, ответственные за выполнение ряда функций. Роботы, которые постепенно получают все большее распространение в нашей жизни, так же являются компьютерными устройствами.

Многообразие внешних устройств, подключаемых к компьютеру

Периферийные 6 (внешние) устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря этим устройствам компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

устройства ввода данных;

устройства вывода данных;

устройства хранения данных.

Рисунок 7 – Классификация периферийных устройств

Виды программного обеспечения компьютеров

Программное обеспечение (ПО, англ. software) – это совокупность программ, обеспечивающих функционирование компьютеров и решение с их помощью задач предметных областей. Программное обеспечение – неотъемлемая часть компьютерной системы, является логическим продолжением технических средств и определяет сферу применения компьютера.

ПО современных компьютеров включает множество разнообразных программ, которые можно условно разделить на две группы:

1. Системное программное обеспечение (системные программы);

2. Прикладное программное обеспечение (прикладные программы);

Системное программное обеспечение – это программы, управляющие работой компьютера и выполняющие различные вспомогательные функции, например, управление ресурсами компьютера, создание копий информации, проверка работоспособности устройств компьютера, выдача справочной информации о компьютере и др. Они предназначены для всех категорий пользователей, используются для эффективной работы компьютера и пользователя, а также эффективного выполнения прикладных программ.

Центральное место среди системных программ занимают операционные системы (англ. operating systems).

Операционная система управляет работой компьютера с момента включения до момента выключения питания. Она загружается автоматически при включении компьютера, ведет диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, дисковым пространством и т.д.), запускает другие программы на выполнение и обеспечивает пользователю и программам удобный способ общения – интерфейс – с устройствами компьютера. Другими словами, операционная система обеспечивает функционирование и взаимосвязь всех компонентов компьютера, а также предоставляет пользователю доступ к его аппаратным возможностям.

Сервисные системы расширяют возможности ОС по обслуживанию системы, обеспечивают удобство работы пользователя. К этой категории относят системы технического обслуживания, программные оболочки и среды ОС, а также служебные программы.

Системы технического обслуживания – это совокупность программно-аппаратных средств ПК, которые выполняют контроль, тестирование и диагностику и используются для проверки функционирования устройств компьютера и обнаружения неисправностей в процессе работы компьютера. Они являются инструментом специалистов по эксплуатации и ремонту технических средств компьютера.

Служебные программы (утилиты, лат. utilitas – польза) – это вспомогательные программы, предоставляющие пользователю ряд дополнительных услуг по реализации часто выполняемых работ или же повышающие удобство и комфортность работы. К ним относятся:

программы-упаковщики (архиваторы), которые позволяют более плотно записывать информацию на дисках, а также объединять копии нескольких файлов в один, так называемый, архивный файл (архив);

антивирусные программы, предназначенные для предотвращения заражения компьютерными вирусами и ликвидации последствий заражения;

программы оптимизации и контроля качества дискового пространства;

программы восстановления информации, форматирования, защиты данных;

драйверы – программы, расширяющие возможности операционной системы по управлению устройствами ввода/вывода, оперативной памятью и т.д. При подключении к компьютеру новых устройств необходимо установить соответствующие драйверы;

коммуникационные программы, организующие обмен информацией между компьютерами и др.

Прикладное программное обеспечение предназначено для решения задач пользователя. В его состав входят прикладные программы пользователей и пакеты прикладных программ различного назначения.

Прикладная программа пользователя – это любая программа, способствующая решению какой-либо задачи в пределах данной проблемной области. Прикладные программы могут использоваться либо автономно, либо в составе программных комплексов или пакетов.

Пакеты прикладных программ – это специальным образом организованные программные комплексы, рассчитанные на общее применение в определенной проблемной области и дополненные соответствующей технической документацией.

1 англ . central processing unit, CPU

2 англ . Random Access Memory , RAM , память с произвольным доступом

3 англ . hard (magnetic) disk drive, HDD, HMDD

4 также видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель

Аналоговые вычислительные машины (АВМ), в которых информация представляется в виде непрерывно изменяющихся переменных, выраженных какими-либо физическими величинами.

Цифровые вычислительные машины (ЦВМ), в которых информация представляется в виде дискретных значений переменных (чисел), выраженных комбинацией дискретных значений какой-либо физической величины (цифр)

Каждый из этих способов представления информации имеет свои преимущества и недостатки. Основным достоинством ЦВМ, определившим их широкое распространение и преобладание среди всех ЭВМ, является то, что точность получаемых с их помощью результатов вычислений не зависит от точности, с которой они сами (т.е. ЦВМ) изготовлены. Точность же результатов вычислений с помощью АВМ непосредственно зависит от точности устройства самой АВМ.

2 подход к классификации средств вычислительной техники

Еще десятилетие назад в основном использовалась классификация средств вычислительной техники, в основу которой было положено их разделение по быстродействию.


СуперЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных.


Большие ЭВМ для комплектования ведомственных, территориальных и региональных вычислительных центров.

3 подход к классификации средств вычислительной техники

С развитием сетевых технологий все больше начинает использоваться другой классификационный признак, отражающий место и роль ЭВМ в сети. Согласно ему классификация принимает следующий вид.

Мощные машины и вычислительные системы для управления гигантскими сетевыми хранилищами информации - предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По своим характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры - представляют собой многомашинные распределенные вычислительные системы, объединяющие под единым управлением несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

Серверы - это вычислительные машины и системы, управляющие определенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс - серверы, почтовые, коммуникационные, Web-серверы и др.

Рабочие станции – представляют собой наличие в сетях абонентских пунктов, ориентированных на работу профессиональных пользователей с сетевыми ресурсами. Этот термин как бы отделяет их от ПЭВМ, обеспечивающих работу основной массы непрофессиональных пользователей, работающих обычно в автономном режиме.

Сетевые компьютеры - представляют собой упрощенные персональные компьютеры, вплоть до карманных персональных компьютеров. Они становятся еще одним стандартом, объединяющим целый класс компьютеров, который получает массовое производство и распространение. Их применение позволяет аккумулировать вычислительные мощности и все виды вычислительных услуг на серверах в сетях ЭВМ. В связи с этим отпадает необходимость каждому пользователю иметь собственные автономные средства обработки. Очень многие из них могут обращаться к вычислительным ресурсам сетей с помощью простейших средств доступа - сетевых компьютеров. Требуемая информация и нужные виды ее обработки будут выполнены серверами сети, а пользователи получают уже готовые, требуемые им результаты.

Уже теперь понятие “сетевой компьютер” отождествляется с целым спектром моделей, различающихся своими функциональными возможностями. Чаще всего под сетевым компьютером понимают достаточно дешевый компьютер с малой оперативной памятью, с отсутствием жесткого и гибкого дисков и со слабым программным обеспечением. Стоимость сетевого компьютера должна быть намного ниже стоимости персонального компьютера достаточно сложной конфигурации.

Классификация сетевых компьютеров

  • Windows-терминалы (Windows-based Terminal, WBT) – настольные и мобильные персональные компьютеры (ПК) с операционной системой Windows СЕ. Рассчитаны на запуск приложений на сервере и получение от него данных;
  • простейшие универсальные сетевые компьютеры (“тонкие клиенты”) – настольные ПК с доступом к различным сетевым ресурсам. Практически все требуемые пользователям программы должны выполняться на сервере;
  • сетевые компьютеры Java (Java Net PC), способные выполнять простейшие Java-программы;
  • достаточно мощные сетевые компьютеры (Net PC) – настольные ПК с резидентной операционной системой, способные работать с большинством приложений.

Классы персональных компьютеров






Рис. 1. Электронные органайзеры, калькуляторы, электронные игры

Современные компьютерные решения могут быть классифицированы, исходя из их отнесения к той или иной архитектуре. Но что она может представлять собой? Каковы основные подходы к пониманию данного термина?

Архитектура компьютерных систем как совокупность аппаратных компонентов

В чем заключается сущность понятия «архитектура компьютерной системы»? Под соответствующим термином прежде всего можно понимать совокупность электронных компонентов, из которых состоит ПК, взаимодействующих в рамках определенного алгоритма с использованием различных типов интерфейсов.

Архитектура компьютерной системы

Основные компоненты, которые входят в состав компьютерной системы:

  • устройство ввода;
  • главный вычислительный чипсет;
  • устройства для запоминания данных;
  • компоненты, предназначенные для вывода информации.

В свою очередь, каждый из отмеченных компонентов может включать в себя большое количество отдельных устройств. Например, главный вычислительный чипсет может включать в себя процессор, набор микросхем на материнской плате, модуль обработки графических данных. При этом тот же процессор может состоять из иных компонентов: например, ядра, кэш-памяти, регистров.

Исходя, собственно, из структуры конкретных аппаратных компонентов ПК, определяется то, какая архитектура компьютерной системы выстроена. Рассмотрим основные критерии, в соответствии с которыми те или иные вычислительные решения могут классифицироваться.

Классификация компьютерных систем

В соответствии с распространенным в среде экспертов подходом, компьютерные системы по своей архитектуре могут относиться:

  • к большим ЭВМ;
  • к мини-ЭВМ;
  • к персональным компьютерам.

Следует отметить, что данная классификация вычислительных решений, в соответствии с которой может определяться архитектура компьютерной системы, многими экспертами признается устаревшей. В частности, те же персональные компьютеры сегодня могут подразделяться на большое количество разновидностей, очень несхожих по назначению и характеристикам.

Таким образом, по мере того как развиваются компьютерные системы, архитектура компьютера может быть классифицирована с использованием меняющихся критериев. Тем не менее обозначенная схема считается традиционной. Полезно будет рассмотреть ее подробнее. В соответствии с ней, первый тип ЭВМ — те, что относятся к архитектуре больших машин.

Большие ЭВМ

Большие ЭВМ ,или мейнфреймы, чаще всего используются в промышленности — как центры обработки данных по различным производственным процессам. В них могут быть инсталлированы мощные, исключительно высокопроизводительные чипы.

Архитектура вычислительных систем и компьютерных сетей

Рассматриваемая архитектура компьютерной системы может осуществлять до нескольких десятков миллиардов вычислений в секунду. Стоят большие ЭВМ несопоставимо дороже остальных систем. Как правило, их обслуживание требует участия довольно большого количества людей, имеющих необходимую квалификацию. Во многих случаях их работа осуществляется в рамках подразделений, организованных в качестве вычислительного центра предприятия.

Мини-ЭВМ

Архитектура вычислительных систем и компьютерных сетей на их основе может быть представлена решениями, классифицированными как мини-ЭВМ. В целом их назначение может быть аналогичным, что и в случае с мейнфреймами: весьма распространено применение соответствующего типа компьютеров в промышленности. Но, как правило, их использование свойственно для относительно небольших предприятий, средних бизнесов, научных организаций.

Современные мини-ЭВМ: возможности

Во многих случаях применение данных компьютеров осуществляется как раз в целях эффективного управления внутрикорпоративными сетями. Таким образом, рассматриваемые решения могут использоваться, в частности, как высокопроизводительные серверы. Они также оснащены очень мощными процессорами, такими как, например, Xeon Phi от Intel. Данный чип может работать со скоростью более 1 терафлопса. Соответствующий процессор рассчитан на производство по техпроцессу 22 нм и имеет пропускную способность памяти в значении 240 ГБ/с5.

Персональные компьютеры

Следующий тип компьютерной архитектуры — ПК. Вероятно, он является самым распространенным. ПК не столь мощны и высокопроизводительны как мейнфреймы и микро-ЭВМ, но во многих случаях способны решать задачи и в сфере промышленности, и в области науки, не говоря о типичных пользовательских задачах, таких как запуск приложений и игр.

Архитектура компьютера и проектирование компьютерных систем

Еще одна примечательная особенность, характеризующая персональные компьютеры, заключается в том, что их ресурсы могут быть объединены. Вычислительные мощности достаточно большого количества ПК, таким образом, могут быть сопоставимы с производительностью компьютерных архитектур вышестоящего класса, но, конечно, достигнуть их уровней номинально с помощью ПК весьма проблематично.

Тем не менее архитектура компьютерных систем, сетей на основе персональных компьютеров характеризуется универсальностью, с точки зрения реализации в различных отраслях, доступностью и масштабируемостью.

Персональные компьютеры: классификация

Как мы отметили выше, ПК могут быть классифицированы на большое количество разновидностей. В числе таковых: десктопы, ноутбуки, планшеты, КПК, смартфоны — объединяющие в себе ПК и телефоны.

Компьютерные системы архитектура компьютера

Как правило, самыми мощными и производительными архитектурами обладают десктопы; наименее мощные - смартфоны и планшеты в связи с небольшими размерами и необходимостью существенно уменьшать ресурсы аппаратных компонентов. Но многие из соответствующих девайсов, особенно топовых моделей, по скорости работы, в принципе, сопоставимы с ведущими моделями ноутбуков и бюджетными десктопами.

Отмеченная классификация ПК свидетельствует об их универсальности: в тех или иных разновидностях они могут решать типичные пользовательские задачи, производственные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа во многих случаях адаптированы к использованию рядовым гражданином, не имеющим специальной подготовки, которая может потребоваться человеку, работающему с мейнфреймом или же мини-ЭВМ.

Как установить отнесение вычислительного решения к ПК?

Главный критерий отнесения вычислительного решения к ПК — факт его персональной ориентированности. То есть соответствующего типа компьютер рассчитан, главным образом, на задействование одним пользователем. Однако многие инфраструктурные ресурсы, к которым он обращается, носят неоспоримо социальный характер: это можно проследить на примере пользования интернетом. При том что вычислительное решение персональное, практическая эффективность в его задействовании может фиксироваться только лишь в случае получения человеком доступа к источникам данных, сформированным другими людьми.

Классификация ПО для компьютерных архитектур: мейнфреймы и мини-ЭВМ

Наряду с классификацией компьютеров, рассмотренной нами выше, существуют также критерии отнесения к тем или иным категориям программ, которые инсталлируются на соответствующие типы вычислительной техники. Что касается мейнфреймов и близких им по назначению, а в некоторых случаях и по производительности мини-ЭВМ, то на них, как правило, реализована возможность задействования нескольких операционных систем, адаптированных для решения конкретных производственных задач. В частности данные ОС могут быть приспособлены к запуску различных средств автоматизации, виртуализации, внедрения промышленных стандартов, интеграции с различными видами ПО прикладного назначения.

Лабораторные ПО архитектура компьютерных систем

Классификация ПО: персональные компьютеры

Программы для обычных ПК могут быть представлены в разновидностях, оптимизированных для решения, в свою очередь, пользовательских задач, а также тех производственных, что не требуют того уровня производительности, который характеризует мейнфреймы и мини-ЭВМ. Есть, таким образом, программы для ПК промышленные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа зависит от конкретной отрасли, в которой они применяются, от предполагаемого уровня квалификации пользователя: очевидно, что профессиональные решения для промышленного дизайна могут быть не рассчитаны на человека, имеющего лишь базовые знания в области применения компьютерных программ.

Программы для ПК в тех или иных разновидностях имеют во многих случаях интуитивно понятный интерфейс, различную справочную документацию. В свою очередь, мощности мейнфреймов и мини-ЭВМ могут быть в полной мере использованы при условии не только следования инструкциям, но также и при регулярном внесении пользователем изменений в структуру запускаемых программ: для этого и могут понадобиться дополнительные знания, например, связанные с использованием языков программирования.

Уровни программной архитектуры ПК

Понятие «архитектура компьютерных систем» учебник информатики, в зависимости от взглядов его автора, может трактовать по-разному. Еще одна распространенная интерпретация соответствующего термина предполагает его соотнесение с уровнями программного обеспечения. При этом не имеет принципиального значения то, в какой конкретно вычислительной системе соответствующие уровни ПО реализованы.

В соответствии с данным подходом, под архитектурой компьютера следует понимать набор различных типов данных, операций, характеристик программного обеспечения, задействуемого в целях поддержания функционирования аппаратных компонентов компьютера, а также создания условий, при которых пользователь получает возможность применить данные ресурсы на практике.

Архитектура компьютерных систем лабораторные работы

Архитектуры программных уровней

Эксперты выделяют следующие основные архитектуры компьютерных систем в контексте рассматриваемого подхода к пониманию соответствующего термина:

  • цифровая логическая архитектура вычислительного решения — фактически, аппаратное обеспечение ПК в виде различных модулей, ячеек, регистров — например, находящихся в структуре процессора;
  • микроархитектура на уровне интерпретации различных микропрограмм;
  • архитектура трансляции специальных команд — на уровне ассемблера;
  • архитектура интерпретации соответствующих команд и их реализации в программный код, понятный операционной системе;
  • архитектура компиляции, позволяющая вносить изменения в программные коды тех или иных видов ПО;
  • архитектура языков высокого уровня, позволяющих приспособить программные коды к решению конкретных пользовательских задач.

Значение классификации программной архитектуры

Конечно, эта классификация в контексте рассмотрения данного термина как соответствующего уровням программного обеспечения, может быть очень условной. Архитектура компьютера и проектирование компьютерных систем, в зависимости от их технологичности и назначения, может потребовать иных подходов разработчиков в классификации уровней ПО, а также, собственно, к пониманию сущности термина, о котором идет речь.

Несмотря на то что данные представления теоретические, их адекватное понимание имеет большое значение, поскольку способствует разработке более эффективных концептуальных подходов к выстраиванию тех или иных типов вычислительной инфраструктуры, позволяет разработчикам оптимизировать свои решения к запросам пользователей, решающих конкретные задачи.

Резюме

Итак, мы определили сущность термина «архитектура компьютерной системы», то, каким образом он может рассматриваться в зависимости от того или иного контекста. В соответствии с одним из традиционных определений, под соответствующей архитектурой может пониматься аппаратная структура ПК, предопределяющая уровень его производительности, специализацию, требования к квалификации пользователей. Данный подход предполагает классификацию современных компьютерных архитектур на 3 основные категории — мейнфреймы, мини-ЭВМ, а также ПК (которые, в свою очередь, также могут быть представлены различными разновидностями вычислительных решений).

Архитектура компьютерных систем учебник

Как правило, каждый тип указанных архитектур рассчитан на решение определенных задач. Мейнфреймы и мини-ЭВМ чаще всего находят применение в промышленности. С помощью ПК также можно решать широкий круг производственных задач, осуществлять инженерные разработки — для этого также приспособлена соответствующая архитектура компьютерных систем. Лабораторные работы, научные эксперименты с такой техникой становятся понятнее и эффективнее.

Еще одна трактовка термина, о котором идет речь, предполагает его соотнесение с конкретными уровнями программного обеспечения. В этом смысле архитектура компьютерных систем — рабочая программа, обеспечивающая функционирование ПК, а также создающая условия для использования его вычислительных мощностей на практике в целях решения тех или иных пользовательских задач.

Читайте также: