Компьютер или человек кто сильнее

Обновлено: 30.06.2024

Люди проигрывают искусственному интеллекту на собственной территории — компьютеры уже выигрывают у нас в шахматы, го, покер и даже Dota 2. Мы составили краткий обзор таких противостояний и попробовали разобраться, какие прикладные задачи могут решать игровые алгоритмы в будущем.

В 1914 году испанский инженер и математик Леонардо Торрес-и-Кеведо, который изобрел одну из первых систем радиоуправления, представил шахматный автомат. Он был достаточно примитивным и умел разыгрывать только эндшпиль — финальную стадию партии — но ни один из мастеров того времени не смог выиграть у автомата Торреса.

Начавшаяся в том же году Первая, а вскоре после нее и Вторая мировые войны остановили дальнейшие разработки. Следующий важный этап для искусственного интеллекта наступил только в 1955 году — тогда и появился сам термин «искусственный интеллект». Его придумал американский ученый Джон Маккарти, а через три года он создал язык программирования Lisp, который стал основным в работе с ИИ.

В 1956 году другой инженер Артур Сэмюэл создает первый в мире самообучающийся компьютер, который играет в шашки. Сэмюэл выбрал именно шашки из-за элементарных правил, которые при этом требуют определенной стратегии. Компьютер обучался на простых гидах по игре, которые можно было купить в магазине. В них описывались сотни партий с хорошими и плохими ходами. Через три года Сэмюэл ввел понятие машинного обучения.

Артур Сэмюэл играет в шашки с компьютером IBM 701, 1959 год

Интересный факт: в 1966 году Джозеф Вейценбаум представил Элизу, первого в истории чат-бота. Элиза могла говорить на английском на любые темы. Вейценбаум разработал ее, чтобы сымитировать прием у психотерапевта. Он специально выбрал сложную ситуацию, в которой многое опирается на умение слушать и распознавать главное в репликах собеседника — компьютер того времени этого не мог. Разработчик таким образом хотел показать, насколько ненатуральным будет общение человека и компьютера, но при тестах оказалось, что люди испытывали в разговоре с Элизой чувства и эмоции, как с полноценным собеседником.

В 1985 году университет Карнеги-Меллон начал разработку ChipTest, компьютера для игры в шахматы. В 1988 к проекту присоединилась IBM и прототип переименовали в Deep Thought. Через год его решили проверить в деле и пригласили Гарри Каспарова, который без труда победил в обеих играх.

В 1995 IBM представила Deep Thought II, который позже назвали Deep Blue, сделав отсылку к прозвищу компании, Big Blue. Через год состоялся первый матч Каспарова и улучшенного компьютера. Человек снова выиграл: в шести партиях Каспаров три раза победил и один раз проиграл, два матча закончились вничью.

Еще через год, в мае 1997, сильно улучшенный Deep Blue одержал в ответном матче две победы, один раз проиграл и трижды сыграл вничью, став первым компьютером, выигравшим у действующего чемпиона мира по шахматам.

Уже в начале 2000-х компьютеры стабильно выигрывали у мировых чемпионов, и шахматы стали первой игрой, в которой люди уступили компьютерам.

Разработчики искусственного интеллекта начали искать новый вызов в более сложных и непредсказуемых играх, для которых нужны более комплексные алгоритмы. После победы Deep Blue астрофизик из университета Принстона заявил, что «пройдет 100 лет перед тем, как компьютер сможет обыграть человека в го — может, даже больше». Ученые приняли вызов и начали разрабатывать машины для этой игры с простыми правилами, в которой тем не менее очень сложно стать мастером.

Первые компьютеры, которые действительно могли составить конкуренцию человеку, появились только в этом десятилетии. В 2014 году Google DeepMind представила алгоритм AlphaGo, который два года соревновался с людьми на равных, но одержал первую значимую победу только в октябре 2015, одолев чемпиона Европы.

Через год на популярном азиатском сервере Tygem, где играют и мировые чемпионы, появился пользователь под ником Master. За несколько дней он провел 60 матчей и ни разу не потерпел поражения, чем вызвал возмущения и подозрения в нечестной игре. 4 января 2017 года Google раскрыла, что все это время под ником скрывалась улучшенная версия AlphaGo.

В мае 2017 AlphaGo — все тот же, который прославился в сети под ником Master — сразился с Кэ Цзе, первым игроком го в мировом рейтинге, и победил в трех матчах из трех, а уже в октябре Google DeepMind выпустила версию, которая была мощнее Master. AlphaGo Zero самообучался вообще без участия человека, просто бесконечно играя сам с собой. Через 21 день он достиг уровня Master, а через 40 уже был лучше всех предыдущих версий.

В декабре 2017 вышел AlphaZero, еще более мощный вариант AlphaGo Zero. Он смог стать лучше предшественника за 8 часов, одновременно достигнув уровня гроссмейстера в шахматах. Так го стала второй игрой, в которой люди больше не могут выиграть.

Го и шахматы подчиняются строгим правилам, и тренировка искусственного интеллекта в них — дело времени. Но есть игры, в которых человеческий фактор выходит на первый план. Например, покер — во многом психологическая игра, построенная на эмоциях, неверабальной коммуникации, умении блефовать и распознавать блеф.

В 2017 году, после более чем 10 лет попыток и неудач, две команды независимо друг от друга разработали свои модели ИИ, способные обыграть профессионалов в покер. Университет Альберты представил DeepStack, нейросеть, обладающую искусственной формой интуиции, а исследователи уже знакомого университета Карнеги-Меллон показали Libratus AI. Нейросеть за 20 дней провела 120 тысяч игр против профессионалов, которые собирались каждый вечер, чтобы обсудить возможные лазейки и недоработки в Libratus. Каждый игровой день анализировала и нейросеть, совершенствуясь по его итогам.

Меньше чем за месяц Libratus выиграла у профессионалов $1,7 млн (пока что виртуальных), а один из участников эксперимента так описал свои впечатления: «Это как играть с кем-то, кто видит все твои карты. Я не обвиняю нейросеть в нечестной игре, просто она действительно настолько хороша».

В 2015 году Илон Маск и Сэм Альтман, президент Y Combinator, основали компанию OpenAI, чтобы создать открытый и дружественный искусственный интеллект.

В 2017 году в рамках эксперимента команда разработчиков решила натренировать свою нейросеть в Dota 2 — игре, в которой две команды по пять человек сражаются друг с другом, используя множество комбинаций более сотни героев. У каждого из них есть свой набор навыков, а игроки могут собирать предметы для усиления персонажа. Это крупнейшая игра в современном киберспорте.

За две недели нейросеть смогла обучиться и победить нескольких лучших игроков мира в режиме один на один, и сейчас ее создатели готовятся выпустить версию для основного режима, пять на пять.

В начале 2018 алгоритмы от Alibaba и Microsoft превзошли человека в тесте на понимание прочитанного текста.

В марте 2018 года небольшой робот собрал кубик Рубика за 0,38 секунды. Рекорд среди людей — 4,69 секунды.

В мае 2018 искусственный интеллект стал лучше людей распознавать рак кожи.

По данным опроса более чем 350 экспертов в области искусственного интеллекта, скоро алгоритмы смогут победить нас в любой игре, через 10 лет научатся водить лучше нас, а к 2050 году будут проводить операции точнее нас.

Сами же исследователи, создав нейросети, которые за несколько дней достигают сверхчеловеческих способностей в играх, теперь пытаются найти им применение в реальной жизни. Google DeepMind использует AlphaGo Zero для исследования сворачивания белка, пытаясь найти лекарство от болезней Альцгеймера и Паркинсона.

«Наша конечная цель — использовать прорывы вроде AlphaGo для решения всех видов насущных проблем в реальном мире», — говорит Демис Хассабис, СЕО компании. «Если такие алгоритмы можно применить и в других ситуациях, как, например, изучение сворачивания белка, снижение уровня потребляемой энергии, или создание новых революционных материалов, то это сильно продвинет вперед все человечество и положительно скажется на наших жизнях».

Искусственный интеллект активно идет и в бизнес — не только в лабораториях Google, но и в российских компаниях: «Тинькофф» использует искусственный интеллект для одобрения кредитов, а «Газпромбанк» распознает улыбки клиентов с помощью компьютерного зрения.

компьютер

Первую ЭВМ создали почти 80 лет назад. Она была огромных размеров, да и «вычисляла» не очень-то быстро. Но это был прорыв. Благодаря ему в каждом доме сегодня есть компактный, но мощный компьютер, и человек активно пользуется этим благом. Однако возможности современных ПК и их влияние на человека гораздо шире, чем может показаться. Разберемся, какую роль играет компьютер в нашей жизни и какой таит потенциал.

Человек и компьютер: кто умнее?

Интеллектуальный потенциал современного компьютера поражает. Его можно описать двумя главными критериями:

  1. Компьютер способен вместить огромное количество информации и использовать ее для анализа.
  2. Искусственный интеллект (ИИ) за секунды анализирует миллионы вариантов развития событий и принимает наилучшее решение.

Эти способности доказывают регулярные матчи по шахматам и другим играм, в которых сталкиваются человек с компьютером. Так, еще в 1997 году состоялось легендарное противостояние чемпиона мира по шахматам россиянина Гарри Каспарова и программы от IBM Deep Blue. В матче победа впервые досталась ИИ. С тех пор прогресс не стоял на месте, и сегодня обыграть опытных гроссмейстеров может даже мобильное приложение.

Следует понимать, что игровая стратегия ИИ заключается лишь в перебирании доступных комбинаций. Многие эксперты, Каспаров в том числе, уверены: машине далеко до гибкого человеческого разума.

Но ИИ пошел дальше и вступил в схватку с чемпионами по го — логической настольной игре родом из Древнего Китая. Вот в чем ее суть: игроки по очереди ставят на поле черные и белые камни, стараясь занять территорию большую, чем противник.

Количество возможных комбинаций в го не сравнится с шахматами: здесь их больше, чем атомов во Вселенной. Грубое перебирание ходов в го попросту не сработает: нужно обладать мощной интуицией и абстрактным мышлением.

Однако продукту компании Google AlphaGo удалось произвести фурор в мире го:

  • в 2015 году программа обыграла чемпиона Европы Фань Хуэя со счетом 5:0;
  • в 2016-м состоялся легендарный матч с корейцем Ли Седолем, заставляющий иначе взглянуть на возможности ИИ.

Обычно машина просчитывает, какой ход обеспечит ей большую вероятность победы. Но в поединке с Седолем ИИ проявил креативность. Его 37-й ход поначалу казался нелогичным. Но позже выяснилось: программа поняла низкую вероятность такого хода у соперника и решила поставить его в тупик — и это, кстати, удалось. Эксперты высоко оценили такое решение, назвав ход красивым и творческим.

И все-таки машинному креативу далеко до человеческого. Да, нейросеть уже умеет писать картины, музыку и стихи. Однако ее творчество ограничено тем, что уже создал человек.

Выходит, компьютеры действительно обладают поразительными возможностями и способны значительно облегчить нам жизнь. Но, в отличие от человека, машина умеет анализировать только то, что уже существует, абстрактное мышление для нее непостижимо. И возможно, что так будет всегда.

Компьютер и человек

Компьютер и человек: Pexels

Роль компьютера в жизни человека

Для чего нужен компьютер современному человеку? Благодаря интернету ЭВМ глубоко вошли в нашу повседневную жизнь:

  1. Компьютер — это практически универсальное средство связи. Общение больше не ограничено расстоянием.
  2. Работа многих людей заключена в компьютере.
  3. Невероятно упростился поиск информации: ответ практически на любой вопрос можно найти в несколько кликов.
  4. Компьютер предлагает развлечения даже в пределах дома.
  5. Многие покупки совершаются в онлайн-режиме.
  6. Компьютеры стали универсальными помощниками в быту, в передвижении и в обучении.

Компьютер в жизни человека играет более глобальную роль, чем кажется. ЭВМ влияют на все сферы развития общества — от производства до медицины:

  • От компьютеров напрямую зависит развитие науки. Все виды исследований — от биологических до социальных — проводятся с использованием компьютерных технологий, обеспечивающих более точные и быстрые результаты.
  • Компьютеры широко используют в медицине. Они способны поддерживать здоровье и жизнедеятельность человека.
  • Развитие любых сфер производства напрямую зависит от технологического прогресса.
  • Компьютеры — распространенный носитель информации. Благодаря этому человеку проще реализовать свой творческий и интеллектуальный потенциал. Меняется структура профессий и интеллектуальной собственности.

В 2020 году пошли разговоры о чипизации людей. В мае изобретатель и бизнесмен Илон Маск заявил о разработке нового устройства, которое будут имплантировать в человеческий мозг. По его словам, такое решение сможет не только обеспечить прямой контакт с компьютером и улучшить память, но и решит многие проблемы:

  • заболевания, поражающие мозг, например болезнь Паркинсона и Альцгеймера;
  • восстановление зрения, слуха, подвижности конечностей;
  • контроля за состоянием здоровья, в частности за уровнем гормонов.

Кроме того, имплант позволит слушать музыку без наушников и скачивать на носитель собственные мысли. Так что сюжеты «Черного зеркала» не так уж далеки от реальности: возможно, уже в ближайшем будущем компьютер станет частью человеческого организма.

ноутбук

Компьютеры в повседневной жизни: Unsplash

Вред компьютера для здоровья человека

Чем больше технологии внедряются в нашу жизнь, тем острее вопрос: как компьютер влияет на человека? Может ли он негативно сказаться на нашем здоровье и продолжительности жизни?

Наибольшие споры вызывает электромагнитное излучение, создаваемое этими электроприборами. У компьютеров оно особенно интенсивное, однако его вред не подтвержден исследованиями. К тому же современные компьютеры обладают достаточной защитой, чтобы оградить человека от негативного эффекта.

Главные угрозы, от которых может пострадать человек за компьютером, намного банальнее. Зная их, можно минимизировать негативное влияние на организм:

  • Динамичная картинка и специфичные мерцания экрана провоцируют усталость глаз, ухудшение зрение и раздражительность. Негативно на восприятии сказываются неудачно подобранные шрифты, цвета и пр.
  • Привычка подолгу сидеть за компьютером способствует варикозному расширению вен и развитию заболеваний позвоночника. А неправильная осанка не только некрасиво выглядит, но и способна нарушить работу внутренних органов.
  • Во время работы компьютер деионизирует воздух, пересушивая его, а также выделяет вредные вещества и притягивает пыль. Это негативно влияет на состояние кожи и дыхательных органов, также возможно развитие аллергии.
  • Регулярное использование компьютера влияет на психику человека.

И речь даже не о зависимости. Упрощенный доступ к информации, бесконечная новостная лента и социальные сети создали для человечества новую угрозу — синдром упущенной выгоды. Это значит, что человек боится пропустить важную новость или возможность, выпасть из информационного поля, жертвуя отдыхом и качественным сном. Также чрезмерное использование компьютера становится причиной стрессов, упадка сил или депрессии.

Конечно, все вышеперечисленные проблемы могут возникнуть и без влияния компьютеров, да и его наличие еще не гарантирует негативных последствий. Все просто: чем больше времени проводит человек у компьютера, тем выше риски. Поэтому важно придерживаться здорового образа жизни и знать меру во всем — даже в полезном использовании технологий.

кто умнее человек или компьютер

Если отвечать на вопрос, кто умнее: человек или компьютер, первое, что приходит в голову, – конечно, компьютеры способны получать и обрабатывать информацию намного быстрее нас (а именно, те самые миллионы операций в секунду).

Что компьютер делает лучше человека

Продвинутые шахматные программы могут всего за доли секунды рассчитать все возможные игровые комбинации и выстроить наиболее удачную стратегию. Что касается людей, то при выполнении подобных задач мы ошибаемся гораздо чаще.

Компьютеры имеют и другие преимущества. Их память надежнее, она вмещает огромное количество информации.

Вообще-то, честно говоря, человеческая память вмещает в себя несравненно намного больше информации, чем любой компьютер, но она так устроена, что далеко не вся запрятанная в ней информация может быть использована в нужный момент.

в чем человек лучше компьютера

А вот компьютеры не страдают таким недостатком, и в любой момент готовы использовать всю заложенную в их память информацию.

Если не принимать во внимание возможные баги (ошибки) и системные сбои, компьютерные расчеты характеризуются высокой степенью точностью.

В чем человек лучше компьютера?

С другой стороны, люди кое в чем превосходят машины. Мы выполняем задачи, основываясь не только на интеллекте, но и на таких абстрактных понятиях, как разум и жизненный опыт.

Компьютеры получают информацию из электронных библиотек. Тем не менее, они не способны переработать ее так, чтобы на выходе получился жизненный опыт, подобный человеческому.

Каждому из нас хорошо известно, что именно свой опыт дается нам порой очень не просто. Хоть и говорят, что хорошо бы учиться на чужих ошибках, но по факту приходится, в основном, учиться на собственных.

Люди обладают и другими абстрактными чертами – творчеством, вдохновением, воображением. Человек может

  • сочинить стихотворение,
  • написать и сыграть музыку,
  • спеть песню,
  • нарисовать картину.

С некоторыми из этих задач справятся и компьютеры, но врожденной способности к творчеству у них нет. Об этом образно писал А.С.Пушкин в 1829 году (классики всегда актуальны, в том числе, в эпоху компьютера и интернета):

О сколько нам открытий чудных
Готовят просвещенья дух
И Опыт, сын ошибок трудных,
И Гений, парадоксов друг,
И Случай, бог изобретатель.

Что такое интеллект?

Шломо Майталь (Shlomo Maital), профессор, старший научный сотрудник Израильского Технологического Института, утверждает, что интеллект состоит из двух основных компонентов.

  1. Один из них – способность учиться,
  2. второй – способность решать задачи.

В этих областях компьютеры могут быть определенно умнее людей.

Современные машины учатся гораздо быстрее человека. Например, компьютер IBM Watson может изучить и запомнить все имеющиеся исследования в сфере онкологии. Ни один человек не способен удержать в голове столько информации. С помощью методов глубокого анализа Watson может предложить схему лечения редкой формы рака – и она будет работать.

В статье «Будут ли роботы в ближайшее время умнее людей?» Майталь приводит еще один пример, указывающий на высокий уровень искусственного интеллекта. 10 февраля 1996 года компьютер Deep Blue от Microsoft победил чемпиона мира Гарри Каспарова в первом из шести туров, а спустя год одержал полную победу над чемпионом. Значит, компьютер все-таки умнее человека? «И да, и нет», – пишет профессор Майталь.

Нет, компьютер не умнее, потому что скорость – это все-таки не интеллект. Победа машины была обусловлена ее способностью за секунду рассчитать миллионы возможных ходов.

В то же время – да, компьютер умнее, потому что он смог правильно проанализировать эти ходы и выбрать те, которые в конечном итоге привели компьютер к победе над Каспаровым.

Но побеждают машины людей пока только там, где надо за короткий промежуток времени обработать как можно больше информации. И это не совсем аналогично термину «думать», это скорее «быстро-быстро перебирать ВСЕ возможные варианты», делать множество «тупых», порой бессмысленных операций, но очень-очень быстро в надежде, что где-то на миллиардной или триллионной (а то и на септильонной – 10 в 24 степени!) операции будет найдено подходящее решение.

По-настоящему «думать» пока может только человек, без вот этого, «суетливого» перебора. И не факт, что когда-нибудь компьютеры научатся «думать» в полном понимании смысла этого слова.

Может ли машина иметь разум?

В настоящее время мы можем обучить компьютеры выполнять те задачи, которые трудны или практически невозможны для человека: например, визуальное распознавание, которое предполагает обработку огромного количества данных и бесконечный ряд повторяющихся операций.

Однако эксперты соглашаются с тем, что в общем понимании разума, творчества и сознания люди стоят выше компьютера.

Мы может создать программу-креативщика, загрузить в нее базу данных, состоящую из произведений искусства, и получить на выходе новую уникальную работу. Но это не творчество в том смысле, в каком мы привыкли его понимать, а лишь его имитация. Точнее, это будет работа программного кода, который следует заложенным инструкциям. Разумом это точно назвать нельзя.

Как только мы разгадаем нейрокод, управляющий клетками нашего мозга, мы сможем создать искусственный аналог этой структуры, и тогда искусственный интеллект перейдет на новый уровень.

Это позволит нам уйти от уже изрядно «поднадоевшей» фон-Неймановской архитектуры компьютеров, на которой человечество пока «безнадежно застряло». И вот тогда… видятся, кажется, безграничные перспективы.

Но «воз пока и ныне там», нейрокод мы не знаем, и когда расшифруем, не ясно. Те же компьютеры с их миллиардами операций в секунду, увы, пока не могут нам помочь в расшифровке этого кода.

Некоторые ученые, в частности, Илон Маск, предупреждают о потенциальных опасностях искусственного интеллекта, которые приведут к чему-то вроде восстания машин. Ведь на практике машинный интеллект может оказаться за пределами нашего понимания, и тогда мы не сможем узнать, совпадают наши с компьютером ценности или расходятся.

Хотя, какие могут у машины быть проблемы с людьми? Нежелание нам помогать? А чем еще они могут заниматься, кроме как быть полезными помощниками? Трудно пока себе это представить.

Может, конечно, лень станет главной проблемой этих сверх компьютеров, ведь, как известно, лень – это ко всему прочему еще и двигатель прогресса.

Однако на эту тему можно философствовать сколько угодно, и это будут только самые общие рассуждения, не более того, при нашем текущем уровне понимания данной проблемы.

Итоги

Размышляя над тем, кто умнее – человек или машина – не стоит забывать, что компьютеры созданы для улучшения нашей жизни, как тот же IBM Watson, который помогает бороться со смертельным заболеванием.

Ряд задач, которые компьютеры выполняют лучше человека, постепенно становится шире. Наша работа – помогать им учиться, ведь жизнь – это не соревнование, а сотрудничество.

И компьютеры будут нам отвечать тем же, становясь все более незаменимыми помощниками людей и, надеюсь, без того, чтобы машины начали диктовать свои условия нам, «хомо сапиенсам», «людям разумным»!

На написание этого обзора натолкнул пост «Секрет древней игры го. Почему компьютер до сих пор не обыграл человека?», опубликованный 25 мая. В самом посте, и, тем более, в комментариях, было много сказано по поводу компьютерных шахмат вообще и матча Deep Blue — Каспаров (1997) в частности. Понятно, что сейчас, спустя уже без малого двадцать лет, мало кому интересны все подробности того матча: компьютеры развиваются с колоссальной скоростью, современные смартфоны легко дадут фору компьютерам того времени, да и возможно, сами шахматы несколько утратили популярность последнее время — по каким причинам — это уже тема отдельного разговора.

Впрочем, некоторые подробности, судя по всему, действительно неизвестны, а подробности эти таковы, что заголовки о “падении последнего интеллектуального бастиона” — не более, чем газетный прием, ибо случившийся по итогам матча, по сути, скандал, в силу своей шахматной специфичности вряд ли был бы интересен широкой публике. Нет, я, несмотря на то, что всегда являлся поклонником Гарри Кимовича Каспарова (исключительно в шахматном плане), не собираюсь его оправдывать за то поражение и пытаться доказать, что все было совсем не так, как сейчас общеизвестно. И уж тем более целью не является опровержение некоторых комментариев на шахматную тему к посту хабраюзера alizar. Единственная цель — рассказать некоторые подробности того, что именно произошло в Нью-Йорке в начале мая 1997 года, и почему результат этого противостояния, по мнению автора, на самом деле никому ничего не доказал.

Сразу оговорюсь: автор не является высококвалифицированным шахматистом. Возможно, некоторые, чисто шахматные моменты в данном материале, могут быть раскритикованы людьми, занимающимися шахматами профессионально. Также, увы, автор не силен ни в теории игр, ни в шахматном программировании, и попытается лишь высказать мнение частично шахматиста, частично знакомого с компьютерами, а не создать Всемирную и всемерную энциклопедию Шахматного Программирования.

Недостаточно быть хорошим игроком; вы также должны хорошо играть
(З.Тарраш)

История шахматного программирования началась, по сути, сразу же с обычным программированием. Искусственный интеллект, возможность его создания, волновали людей издавна, и программируемая вычислительная техника оказалась более подходящим средством для поиска такой возможности, чем человек, который обыгрывал Наполеона, сидя в тумбочке. Первые шахматные программы были, впрочем, соперниками лишь друг другу: в силу огромного количества вариантов шахматных партий, речи о полном переборе не было, и нет, кстати, и по сей день. (И не предвидится (с) Швондер.) Это не мешало шахматным программам периодически удивлять профессиональных шахматистов как неожиданно лучшими ходами (что объясняется в первую очередь тем, что форсированные варианты компьютер считает все же быстрее и точнее), так и внезапными просмотрами мата в пару-тройку ходов ради спасения ферзя. Однако, если в тактике даже сравнительно слабые компьютеры были вполне себе сильны, то вот в позиционной игре все было очень печально — если еще как-то можно было научить программу, что ферзь дороже пешки (что в некоторых случаях приводило к вышеупомянутым просмотрам мата), то научить оценке позиции, на которой, собственно, вся партия и держится, возможным не представлялось. Это и неудивительно — правильная оценка позиции — это задача непростая даже для шахматистов-разрядников, единого рецепта нет, даже две практически одинаковые позиции, отличающиеся лишь положением одной пешки, могут иметь противоположные оценки.

С течением времени, впрочем, прогресс стал брать свое. Дебютные библиотеки позволили программам не “плавать” в начальной стадии партии — такие “плавания” нередко приводили к окончанию партии еще в дебюте — все же, несколько столетий опыта и рост дебютной теории с начала ХХ века давали человеку немалую фору. Дебютные библиотеки эту фору не просто устранили — в отличие от человека, компьютер теперь мог разыграть абсолютно любой дебют, уйти от любой дебютной ловушки, да и сам, соответственно, мог в любую ловушку поймать! Шахматистов, знающих все дебюты, не бывает — есть понятие “дебютный репертуар” — это некоторое количество начал, использующихся шахматистом. Человек может этот репертуар расширять, пополнять, готовить, например, новые дебюты к новому турниру, но с появлением у компьютеров в памяти дебютной энциклопедии человек стал проигрывать в этом компоненте. Кстати, фора тут вышла двойная: в отличие от компьютера, который по сути, играет по дебютной библиотеке, человек в ходе партии подсмотреть в дебютную энциклопедию не может. Единственный вариант уравнять тут шансы — неправильные начала, не внесенные в энциклопедии, причем, максимум шансы получится именно уравнять — человек ведь также не имеет возможности применить багаж своих дебютных знаний.

Надо сказать, что проблема дебютных знаний и их чрезмерной распространенности и доступности волновала и самих шахматистов. Так, совершенно нормальными в профессиональных шахматах стали ситуации, когда игроки сделали по 30-40 ходов, и ничего нового в них не было — все эти ходы уже были в другой партии. (Тут, конечно, дело касается не только дебюта, но, как правило, такие ситуации были связаны в первую очередь с дебютными спорами, и некий вариант мог отстаиваться и в глубоком миттельшпиле, и даже в эндшпиле!) Либо ситуации из партий гросс- и супергросс- мейстеров — партия до 20 ходов, обычно — 16-18, все “из книжки” и соглашение на ничью — потому что позиция теоретически ничейна. Спасением виделись Шахматы Фишера, они же Шахматы-960, где фигуры в начальной позиции могут располагаться произвольным образом. Увы (или к счастью?), обычные шахматы этот вариант вытеснить не смог. Почему — сказать сложно, но рискну предположить, что профессиональным шахматистам он не был вполне интересен, им и в стоковых дебютах хватало, чем заняться, а остальным — не давал никаких преимуществ — см. комментарий Каспарова. В самом деле, дебютные принципы не поменялись — “развивай фигуры как можно быстрее и безопаснее и мешай делать то же самое сопернику”, и тот, кто эти принципы понимал в стандартных шахматах — не перестал их понимать и в фишеровских, а кто двигал фигуры исключительно по памяти из справочника и при любом отклонении впадал в панику — стал в эту самую панику впадать гораздо быстрее, на 2-3 ходу.

Гораздо лучше в теории дела обстояли с эндшпилем. Особенно с малофигурными окончаниями — чем меньше фигур — тем лучше. Такие ситуации, в отличие от дебютов, просчитывались куда как проще: фигур-то гораздо меньше! Да и ограничения по количеству ходов способствовали (см. Правило 50 ходов). Так или иначе, компьютеры получили возможность пользоваться Эндшпильными таблицами Налимова и это, пожалуй было еще большей победой, нежели дебютные библиотеки. Впрочем, человек тут имел свои козыри — например то, что множество вариантов шахматных окончаний можно было играть, практически не считая варианты, а пользуясь известными алгоритмами, самый знаменитый пример (первый этюд, вероятность возникновения подобных мотивов в реальной партии достаточно высока).

А вот в миттельшпиле человек оставался хозяином положения. Да, совершенствовались алгоритмы для оценки позиции, да, компьютеры считали все дальше и глубже, но оставалось одно, то, из-за чего компьютеры так пока что и не стали ни писателями, ни композиторами: план. Если в дебюте компьютер мог двигать фигуры исключительно “по книжке”, а в эндшпиле — придерживаться неких алгоритмов, то с планом были трудности. Да, очевидно, если при оценке позиции машина находила у соперника слабые места — то могла делать ходы, направленные на их использование. Если слабые места были у машины — то она могла предпринимать действия для защиты. Однако, живой шахматист не будет руководствоваться только своим планом — он попытается определить планы соперника. Замечательная задача для ИИ. Вот только выполнимая ли?

В 1996 году представители компании IBM предложили Гарри Каспарову сыграть матч против их шахматной программы «Дип Блю» с призовым фондом в $500 тыс. «Дип Блю» — суперкомпьютер на базе системы RS6000, состоящий из 32 узлов, каждый из которых состоял из 512 процессоров, аппаратно оптимизированных для шахматной программы. Производительность «Дип Блю» соответствовала 11,38 GFLOPS, и компьютер мог оценивать до 200 млн позиций в секунду (Википедия).

Тринадцатый чемпион мира Гарри Каспаров всегда считал свое занятие прежде всего творчеством. То есть, тем, что машине недоступно и не будет доступно никогда. Каспаров говорил:

“Если компьютер сможет превзойти в шахматах лучшего из лучших, это будет означать, что ЭВМ в состоянии сочинять самую лучшую музыку, писать самые лучшие книги. Не могу в это поверить. Если будет создан компьютер с рейтингом 2800, то есть равным моему, я сам сочту своим долгом вызвать его на матч, чтобы защитить человеческую расу.”

По иронии судьбы, именно Каспаров стал первым чемпионом мира, проигравшим компьютеру. Первая же партия матча Deep Blue — Каспаров (Филадельфия, февраль 1996 г.) принесла сенсацию — Чемпион Мира повержен машиной. Увы для поклонников ИИ — уже во второй партии чемпион мира реваншировался, а после еще двух партий, завершившихся вничью, выиграл дважды, доказав таким образом, что чемпион мира — это чемпион мира. Все же, было уже понятно, что компьютерные шахматы — это реальная сила, и что во втором матче, который IBM предложила спустя чуть более года, чемпиону-человеку придется постараться, чтобы защитить человеческую расу.

Второй матч Каспарова с “Темно-синим” начался, наверное, даже с огорчительного для любителей интриги результата — Каспаров выиграл белыми легко, избрав неправильное начало (точнее, этот дебют вполне можно классифицировать, как Дебют Рети). Казалось, все ясно, идея Каспарова проста — лишить соперника первого козыря, дебютной библиотеки, и играть просто в шахматы, что машине не дано. Конечно, отойти от теории при игре черными гораздо сложнее, тон ведь задают белые, и тут Каспаров, вероятно, надеялся на Испанскую партию, ту самую, которую в количестве восемнадцати штук играл сам Остап Бендер — старинный дебют, где отыграть по книжке сам дебют мало, надо уметь играть миттельшпиль. И тут-то и началось.

Тот не шахматист, кто, проиграв партию, не заявляет, что у него было выигрышное положение
(И.Ильф)

Итак, сначала — только игровые факты. Партии игрались с контролем 2 часа на 40 ходов (классический контроль времени). Играя черными, Каспаров попытался оживить позицию с помощью жертв, машина эти жертвы отклонила, и в итоге, чемпион мира, оказавшийся в сложнейшей позиции, сдался. Все просто и ясно. Далее часть описания и цитат заимствована отсюда (там же можно посмотреть всю партию №2), часть — описана автором.

По мнению чемпиона, первый звоночек прозвенел на 35 ходу — суперкомпьютер, до этого тративший не более трех минут на ход, задумался на четверть часа. Еще шесть минут — над следующим ходом. Результат был еще более неожиданным — компьютер отклоняет жертву пешек черными.

По условиям, после каждой партии IBM предоставляла распечатки анализов, которые компьютер производил во время каждой партии. По словам Каспарова, вариант, избранный машиной, ей же был оценен, как неясный, в отличие от принятия жертвы, которое машина оценивала как выгодное для себя. “Очень мило. Мы имеем дело с уникальным событием, Машина отказывается от выигрыша трех пешек, потому что ей якобы “неясно” — Г.Каспаров.

Партия продолжалась, и двигалась к логическому финалу, который в конце концов и наступил — Каспаров сдался. Однако чудеса на этом не закончились. Как выяснилось практически сразу — чемпион мира сдался в ничейной позиции. Казалось бы, обвинять тут некого, кроме самого потерпевшего. Но все не так просто. Каспаров сдался, просто поверив, что машина непогрешима. И ошибся. Своим последним ходом в партии машина допустила грубейшую тактическую ошибку, после чего черные могли закончить партию вничью. Удивление Каспарова после партии вполне понятно: машина, нашедшая сильнейший позиционный ход, который оказался не под силу даже многим белковым шахматистам, то есть, обошедшая людей на их же территории — в позиционной игре, тут же проиграла на своей территории, где она не может ошибаться — допустив элементарный тактический зевок?

Эти вопросы до сих пор остаются вопросами, а матч, тем не менее, продолжался. Три партии завершились вничью. Была ли шестая партия для Каспарова своеобразным финалом? Финалом в матче за честь и ум человеческой расы.

В шахматах выигрывает тот, кто ошибается предпоследним
(С.Тартаковер)

Пожалуй, с точки зрения компьютерных шахмат, в шестой партии не произошло ничего интересного. Вопросы в этой партии в основном к чемпиону мира — каким образом он мог сделать ход 7.… h6? Компьютер тут же пожертвовал коня и позиция черных покатилась под откос. После 19-го хода белых Каспаров сдался. Единственное его достижение в данной партии — это то, что официально она не стала самым быстрым поражением в его карьере — шахматные статистики не учитывают партии человека с компьютером. Хотя формально, как вы поняли, это именно такая партия.

Дальше было менее интересно — якобы, IBM отказалась предоставлять логи анализов этой партии, что, судя по всему, неправда (см. ссылки внизу), а предложение Каспарова сыграть еще один матч было встречено корпорацией оригинально — герой матча (Deep Blue) был демонтирован и сдан в утильмузей. Впрочем, это как раз легко объяснить тем, что так или иначе, но чемпион мира был побежден, цель достигнута, а выкладывать еще раз круглую сумму для утешения Каспарова в IBM как-то не очень хотели.

И все же, что доказали эти матчи? Что человек повержен? Если брать оба матча Каспарова с DB — то счет остался в пользу Каспарова — 6,5-5,5. Если даже брать только второй — то во-первых, наверное, статистически результат 2-1 в пользу одной стороны (без учета ничьих) ничего не доказывает. Во-вторых, поражение Каспарова в шестой партии — из-за явного зевка — вряд ли на основании такой грубейшей ошибки (я молчу про сдачу Каспаровым второй партии в ничейной позиции) можно доказывать силу шахматной программы.

После переезда Deep Blue в музей, люди, разумеется, не перестали играть в шахматы с компьютером. Однако, о подобных матчах вообще не слышно, гроссмейстеры теперь предпочитают более экзотические виды использования компьютера. Может, ведущие гроссмейстеры просто боятся поражений от машины? Почему тогда владельцы суперкомпьютеров, авторы мощных шахматных программ, не заявляют, мол, вот мы предложили матч, а чемпион мира отказался? Скорее всего дело действительно в падении интереса к шахматам, интереснее сейчас ставить другие задачи перед ИИ, а поражение от машины в шахматы, пусть даже и чемпиона мира — кому оно интересно, ведь “уже давно машина выиграла у чемпиона мира”.

Читайте также: