Наука о компьютерах как называется

Обновлено: 04.07.2024

Термин информатика возник в 1960-х годах во Франции для названия области, занимающейся автоматизированной переработкой информации, как слияние французских слов information и automatique (F. Dreyfus, 1962) [1] .

Содержание

Введение

До настоящего времени толкование термина «информатика» (в том смысле как он используется в современной научной и методической литературе) ещё не является установившимся и общепринятым. Обратимся к истории вопроса, восходящей ко времени появления электронных вычислительных машин.

Понятие информатики является таким же трудным для какого-либо общего определения, как, например, понятие математики. Это и наука, и область прикладных исследований, и область междисциплинарных исследований, и учебная дисциплина (в школе и в вузе).

Несмотря на то, что информатика как наука появилась относительно недавно (см. ниже), её происхождение следует связывать с работами Лейбница по построению первой вычислительной машины и разработке универсального (философского) исчисления.

История информатики

Отдельной наукой информатика была признана лишь в 1970-х; до этого она развивалась в составе математики, электроники и других технических наук. Некоторые начала информатики можно обнаружить даже в лингвистике. С момента своего признания отдельной наукой информатика разработала собственные методы и терминологию.

Первый факультет информатики был основан в 1962 году в университете Пёрдью (Purdue University). Сегодня факультеты и кафедры информатики имеются в большинстве университетов мира.

Высшей наградой за заслуги в области информатики является премия Тьюринга.

Структура информатики

Информатика делится на ряд разделов.

Теоретическая информатика

Практическая информатика

Практическая информатика обеспечивает фундаментальные понятия для решения стандартных задач, таких, как хранение и управление информацией с помощью структур данных, построения алгоритмов, модели решения общих или сложных задач. Примеры включают в себя алгоритмы сортировки и быстрого преобразования Фурье.

Практическая информатика предоставляет также необходимые инструменты для разработки программного обеспечения, например - компиляторы.

Техническая информатика

Техническая информатика занимается аппаратной частью вычислительной техники, например основами микропроцессорной техники, компьютерных архитектур и распределенных систем. Таким образом, она обеспечивает связь с электротехникой. Компьютерная архитектура - это наука, исследующая концепции построения компьютеров. Здесь определяется и оптимизируется взаимодействие микропроцессора, памяти и периферийных контроллеров.

Прикладная информатика

Прикладная информатика объединяет конкретные применения информатики в тех или иных областях жизни, науки или производства, например, бизнес-информатика, геоинформатика, компьютерная лингвистика, биоинформатика, хемоинформатика и т.д.

Естественная информатика

Естественная информатика - это естественнонаучное направление, изучающее процессы обработки информации в природе, мозге и человеческом обществе. Она опирается на такие классические научные направления, как теории эволюции, морфогенеза и биологии развития, системные исследования, исследования мозга, ДНК, иммунной системы и клеточных мембран, теория менеджмента и группового поведения, история и другие [5] [6] . Кибернетика, определяемая, как "наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество" [7] представляет собой близкое, но несколько иное научное направление. Так же, как математика и основная часть современной информатики, оно вряд ли может быть отнесено к области естественных наук, так как резко отличается от них своей методологией. (Несмотря на широчайшее применение в современных естественных науках математического и компьютерного моделирования.)

Основные термины

См. также

Примечания

Литература

Ссылки

Кент Бек • Гради Буч • Фред Брукс • Barry Boehm • Уорд Каннингем • Оле-Йохан Даль • Том Демарко • Эдсгер Вибе Дейкстра • Дональд Кнут • Мартин Фаулер • Чарльз Энтони Ричард Хоар • Watts Humphrey • Майкл Джексон • Ивар Якобсон • Craig Larman • James Martin • Мейер Бертран • Дэвид Парнас • Winston W. Royce • James Rumbaugh • Никлаус Вирт • Эдвард Йордан • Стив Макконнелл

Моделирование данных • Архитектура ПО • Функциональная спецификация • Язык моделирования • Парадигма • Методология • Процесс разработки • Качество • Обеспечение качества • Структурный анализ)

CMM • CMMI • Данных • Function model • IDEF • Информационная • Metamodeling • Object model • View model • UML

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Информатика" в других словарях:

ИНФОРМАТИКА — [ Словарь иностранных слов русского языка

информатика — энергоинформатика, индустрия знаний Словарь русских синонимов. информатика сущ., кол во синонимов: 3 • индустрия знаний (1) • … Словарь синонимов

ИНФОРМАТИКА — отрасль науки, изучающая структуру и общие свойства информации, а также вопросы, связанные с ее сбором, хранением, поиском, переработкой, преобразованием, распространением и использованием в различных сферах деятельности … Большой Энциклопедический словарь

ИНФОРМАТИКА — ИНФОРМАТИКА, и, жен. Наука об общих свойствах и структуре научной информации, закономерностях её создания, преобразования, накопления, передачи и использования. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Развитие человечества привело к тому, что пользователи начали изобретать и осваивать совершенно новые технологии. Вместе с ними появились науки и профессии, которых раньше не было. Яркий пример тому – Computer Sciences.

Немногим понятно, кто это вообще такие. Относительно новое и перспективное направление, которое рекомендуется изучать программерам, разработчикам, а также вообще всем, кто в той или иной степени заинтересован в компьютерах и IT-технологиях. В статье будет рассказано о соответствующем направлении более подробно. В конце каждый разберется, стоит ли браться за него, и как изучить в должной степени.

Определение

Computer Science – перспективное направление современного обучения, тесно связанное с IT-технологиями. Представляет собой совокупность практических и теоретических данных, используемых специалистами при создании и задействовании:

  • информационных систем;
  • баз данных;
  • разнообразных технологий;
  • вычислительной техники.

Сюда также относят программирование. Впервые в качестве относящейся к computers возникла в 20 веке (30-е годы). Образовалась область посредством объединения математической логики и созданием компьютеров.

Говоря простыми словами, Computer Science – все то, что относится к современной «вычислительной технике». Для большинства иностранцев ассоциируется со специальными курсами или направлением обучения в ВУЗе.

Для чего необходимо

Computing Courses по упомянутому направлению в основном проходят программисты – как новички, так и опытные специалисты. Их разделяются на несколько категорий:

  1. Тех, кто собственными силами хотел окунуться в мир IT и изучил языки программирования. Обычно – один из них. Далее обучение прекратилось.
  2. Тех, кто осознает, что в современном мире прогресс и развитие держится на АйТи-технологиях, которые непрестанно совершенствуются. Такие люди не сидят на месте, постоянно изучают что-то новое. Они хорошо разбираются в Computer Science. Способны придумывать нестандартные решения тех или иных задач.

В первом случае работников нельзя назвать лентяями – они просто занимаются «стандартными» обязанностями. Такие лица прекрасно подходят для решения типовых задач и написания элементарных приложений.

Второй вариант – более системный. Подобные спецы готовы заниматься разработкой инновационного программного обеспечения. Работники делают разнообразные утилиты для бизнеса, совершенствуя его с минимальными затратами. Обеспечено полноценно и постоянное развитие.

Стоит обратить внимание еще и на то, что Computer Science – это еще и весьма перспективное высокооплачиваемое направление. Подчиненные в выбранной области получают не только самосовершенствование и бесценные знания, но и достойный заработок.

Это science требуется изучить, так как технологический прогресс с каждым годом занимает все больше места в обыденной жизни. Без элементарных познаний в упомянутом направлении совсем скоро будет не обойтись.

Направления

Если человек решил самостоятельно, или посетив специализированные курсы, освоить рассматриваемую область, придется понять, что она в себя включает. На самом деле науки технологического характера состоят из многочисленных сфер. Освоить все сразу и в полном объеме невозможно. Поэтому приходится выбирать область деятельности.

На сегодня Компьютерная Science преимущественно подразумевает следующие варианты развития событий:

  • программирование;
  • архитектура компьютера (электронно-вычислительных машин);
  • алгоритмы и структуры данных;
  • математика для IT и computer science;
  • операционные системы;
  • компьютерные сети;
  • базы данных;
  • языки программирования и компиляторы;
  • распределенные системы;
  • графика;
  • искусственный интеллект.

Если описать направленности кратко, это – написание программных кодификаций, а также информатика и математика. Но изучаемая информация выходит за пределы «стандартного» школьного и ВУЗовского обучения.

Programming

То, с чего начинают многие. Принципы написания программных кодов – основополагающая всех информационных технологий. Здесь вариантов воплощения задумки в жизнь несколько:

  1. Пойти обучаться в ВУЗ после 11 классов в школе. Отнимает от 5 лет, зато в процессе удается стать настоящим специалистом с дипломом государственного образца.
  2. Отдать предпочтение получению образования в техникуме/колледже после 9/11 классов. Человек здесь больше практикуется. По выпуску получает диплом о средне профессиональном образовании.
  3. Заниматься самообучением. Неплохой вариант для тех, кто еще не определился, стоит ли вообще связываться с IT-технологиями. Требует усидчивости и долгого кропотливого труда. Стать настоящим профессионалом в области написания кодов можно и без «вышки».

Последний вариант – это посещение Computer Science курсов. Есть варианты как для новичков, так и для уже более опытных людей. По окончании процесса выдается спецсертификат.

Внимание: все перечисленные методы получения знаний относительно программирования подходят и для остальных сфер. Но иногда добиться успеха без ВУЗа или техникума окажется предельно трудно.

Архитектура электронно-вычислительной техники

Может называться как «компьютерные системы» или «организация computers». Важный раздел, характеризующий принципы функционирования аппаратуры. Речь идет о слое, находящимся «под» программным обеспечением. Инженеры-самоучки не слишком уважают архитектуру ЭВМ, хотя она крайне важна.

Для того, чтобы разобраться в области самостоятельно, можно прочесть книгу «The elements of Computing Systems». Позволяет осознать, каким образом функционирует computer. Здесь есть:

  • иерархия памяти;
  • вычислительный конвейер;
  • написание логики на языке описания аппаратов (HGL) посредством центрального процессора.

После изучения соответствующей литературы удастся намного лучше ориентироваться в архитектуре ЭВМ. Далее теорию обычно изучают посредством спецкурсов.

Алгоритмы и структуры

В компьютерных науках не обойтись без алгоритмов и структур информации. Область служит одной из основополагающих. Помогает потренироваться в решении разнообразных задач, необходимых в выбранной специализации.

Практика показывает, что алгоритмы и структуры «материалов» изучаются через:

  • специализированную литературу (электронную или бумажную);
  • обучающие видеоролики;
  • спец course.

В ВУЗах соответствующий раздел изучается, но не слишком углубленно. Получаемых знаний достаточно на первых порах, но затем приходится «ударяться» в самообразование.

Дела математические

В компьютерных науках невозможно обойтись без разного рода вычислений. Все, что связано с computers, можно отнести в той или иной степени к прикладной математике. Хороший программер или «комп.ученый» не оставит math в стороне. В один прекрасный момент решение поставленных задач, особенно при разработке сложного контента, отсутствие достаточного багажа знаний станет огромной проблемой.

Математиков, занятых углубленным изучением «дискретики», ждет успех в случае смены специализации в пользу IT-технологий. Связано это с тем, что компнауки относятся преимущественно к дискретной математике. Выходят они далеко за пределы матанализа.

Также рекомендуется изучать:

  • комбинаторику;
  • основы логики;
  • теорию вероятности;
  • графы;
  • криптографию (основы);
  • линейную алгебру.

Последняя особо важна для тех, кто предпочтет в будущем сконцентрироваться на графике и видео, а также машинном обучении. Математика для Computer Science – главный «раздел».

Операционные системы

Каждый современный юзер точно знает – операционных систем у ПК и других устройств полно. Каждое «системное программное обеспечение» обладает собственным функционалом, особенностями и интерфейсом. Чтобы стать настоящим специалистом в компьютерах, стоит изучать все ОС. Либо выбрать одну «специализацию», в которой совершенствоваться далее.

В соответствующей «категории» предстоит узнать о принципах работы ОС, а также об их видах. Лучше действовать путем прохождения курсов (можно дистанционно). Вариантов полно – как для новичков, так и для продвинутых «ученых».

При самообразовании идеально прочесть код маленького ядра, после чего откорректировать его. Пример – XV6. Это – современная интерпретация Unix x86, которая написана на ANSI C.

Программеры работают преимущественно с веб-серверами и компьютерными сетями. Значит, упомянутую сферу обделять вниманием нельзя. Она расскажет о:

  • принципах работы сетей;
  • разновидностях «подключений»;
  • настройке и отладке сетей.

Самоучкам рекомендуется прочесть книгу Computer Networking: A Top-Down Approach. Там не только теория, но и практика – небольшие проекты и задания.

Базы данных

База данных – совокупность информации, которая организована в концептуальную структуру, описывающую особенности соответствующих материалов и их взаимоотношения. Простыми словами – некое хранилище электронных сведений. Используются БД повсеместно – не только в программировании и IT, но и в обыденной жизни: экономика, бухгалтерия, юриспруденция. Даже при работе с 1C требуется знания баз данных.

В ВУЗах этому разделу уделяется достаточно времени как у «компьютерщиков», так и у математиков/экономистов/программистов. Но лучше посетить курсы по базам данных, чтобы получить максимально много полезной информации.

Компиляторы и языки

Программеры занимаются непосредственным изучением языков «общения» с компьютерами и приложениями. А вот работники компьютерных наук стараются разобраться в принципах работы оных. Соответствующие познания помогают обойти даже опытных разрабов. Схватывание нового материала будет максимальным и быстрым.

Данная область затрагивает:

  • принципы функционирования языков при создании машинных кодификаций;
  • программы, используемые при кодировании и эмуляции;
  • особенности компиляторов.

Своими силами здесь обойтись проблематично.

Распределенные системы

Распределенной системой называют некую систему, в которой отношения местоположения составляющих или их групп играют важную роль для дальнейшего функционирования. С развитием прогресса и IT даже самые простые приложения способны функционировать на нескольких computers одновременно. Распределенные системы являются наукой о том, как обеспечить подобное явление.

Для изучения Science соответствующей области требуется просмотреть книгу Distributed Systems. Лучше пробежать глазами по всем изданиям. 3-е – это своеобразное дополнение к предыдущим.

С чего начать

Новички в Москве и других регионах часто задумываются над тем, с чего же начать изучение компьютерных наук. И как вообще подойти к решению поставленного вопроса комплексно, чтобы ничего важного не упустить.

Для этого рекомендуется:

  • определиться с направлением – начинать лучше «с малого» (основы информатики);
  • подготовить соответствующую литературу;
  • выяснить мотивы выбора профессии IT Science (если это только заработок – ничего не получится);
  • изучить имеющиеся в доступе уроки и литературу.

Но для полноценного образования стоит присмотреться к специализированным курсам. Есть как всеобъемлющее звено «Компьютерные науки», так и различные направленности упомянутой области. Главное помнить – изучить computer и его принципы работы не так-то просто. Это долгий и весьма энергозатратный процесс. Но, если постараться, все обязательно получится.

Хотите освоить современные компьютерные науки? Огромный выбор курсов по востребованным IT-направлениям есть в Otus!

Содержание

Этимология

Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском словаре английского языка. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютера.

История







Экспоненциальное развитие компьютерной техники


Диаграмма Закона Мура. Количество транзисторов удваивается каждые 2 года

Математические модели

Архитектура и структура

Архитектура компьютеров может изменяться в зависимости от типа решаемых задач. Оптимизация архитектуры компьютера производится с целью максимально реалистично математически моделировать исследуемые физические (или другие) явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при компьютерном моделировании (симуляции) дамб, плотин или кровотока в человеческом мозгу. Подобным образом сконструированные аналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.

Классификация

По назначению





Элементная основа

Первая троичная ЭВМ «Сетунь» на ферритдиодных ячейках была построена Брусенцовым в МГУ.

Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

Физическая реализация

Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между 1903 и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

В настоящее время ведутся серьёзные работы по созданию оптических компьютеров, использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК. И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров.

Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

  • Гидравлический компьютер
  • Биокомпьютер Адлемана

По способностям

Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

Современный компьютер общего назначения

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Конструктивные особенности



Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

Система счисления

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме. [9] Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

Под руководством академика Хетагурова Я. А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём.

Хранение программ и данных

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Программирование



Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных. Первую реально работающую программируемую вычислительную машину сконструировал немец Конрад Цузе в 1941 году.

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Решение любой задачи для компьютера является последовательностью вычислений.

Было обнаружено, что компьютеры могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Применение



Трёхмерная карта поверхности участка земной суши, построенная при помощи компьютерной программы

Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей (если не считать некоторых уникальных людей-счётчиков). Не случайно первым высокоуровневым языком программирования был Фортран, предназначенный исключительно для выполнения математических расчётов.

Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол. Позже появились СУБД со своими собственными языками программирования.

Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё бо́льшая часть техники начинает включать в себя управляющий компьютер.

Пятое. Современные суперкомпьютеры используются для компьютерного моделирования сложных физических, биологических, метеорологических и других процессов и решения прикладных задач. Например, для моделирования ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений, когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.

Компьютерные науки и информатика являются дисциплинами, которые охватывают вопросы теории и практики где требуется мышление как в абстрактном так и в конкретном плане. Компьютеры, как устройства, выполняющие определенную последовательность вычислений можно увидеть везде.

компьютерные науки

Сегодня практически каждый пользователь современного устройства немного программист из-за необходимости иметь интенсивный практический опыт.

Современное учение помогающее решить проблемы

Компьютерные науки рассматриваются на более высоком уровне, как человеческая деятельность помогающая решить насущные проблемы. Компьютерщики должны быть искусны в моделировании и анализе проблем. Они также должны иметь проектные решения и уметь проверять их правильность. Решение проблем требует точности, творчества и тщательной продуманности.

Компьютерные науки также имеют тесные связи с другими дисциплинами. Многие проблемы в области науки, техники, здравоохранения, бизнеса и других областей могут быть решены эффективно только с компьютерами, но поиск решения требует опыта и знания в области конкретного приложения. Таким образом, компьютерщики часто становятся специалистами в других темах.

И наконец, самое главное, компьютерщики это престижно, современно и актуально.

Компьютерные науки в спектре специальностей

Специальности компьютерных наук включают архитектуру компьютера, программное обеспечение систем, графику, искусственный интеллект, вычислительную науку и программную инженерию.

Таким образом, дисциплина относится как к продвижению фундаментального понимания алгоритмов и информационных процессов в целом, так и практической разработке эффективных, надежных программных и аппаратных средств для удовлетворения заданным требованиям.

Перечень компьютерных наук

Из-за быстрой эволюции трудно представить полный перечень компьютерных наук.

Однако ясно, что есть некоторые из ключевых областей как теория, алгоритмы и структуры данных, методология программирования и языки, компьютерные элементы и архитектура.

компьютерные технологии

Другие области включают программное обеспечение, искусственный интеллект, компьютерные сети и телекоммуникации, системы управления базами данных, параллельные вычисления, распределенные вычисления, взаимодействие компьютера и человека, компьютерная графика, операционные системы, числовые и символьные вычисления.

Профессиональный программист должен иметь прочную основу в ключевых участках и, скорее всего, иметь глубокие знания в одной или более областях дисциплины, в зависимости от конкретной области его практики, а также компьютерные технологии.

Таким образом, хорошо образованный компьютерщик должен уметь применять основополагающие понятия и методы расчетов, алгоритмы и компьютерный дизайн для конкретной дизайнерской задачи. Работа включает детализацию спецификации, анализ проблемы, и обеспечивает конструкцию, которая функционирует как необходимый элемент, имеет удовлетворительные характеристики. Выполненная работа должна быть надежна и ремонтопригодна, отвечать желаемым критериям стоимости.

Очевидно, что компьютерщик должен не только иметь достаточную подготовку в области информатики, чтобы быть в состоянии выполнять задачи, но также должен иметь твердое понимание в области математики и естественных наук, а также широкий кругозор образования в либеральных исследованиях, чтобы обеспечить основу для понимания социальных последствий выполняемой работы.

Основы дисциплины

Основы и направления информатики

Методы изучения информатики

Способом изучения любой науки являются методы, используемые в этой науке. В каком-то смысле эти методы подобны во многих или большинстве наук, но они могут принимать разные характеристики по каждой дисциплине.

Важные методы, используемые при изучении компьютерных наук:

  • изобретения: разработка новых алгоритмических и архитектурных парадигм
  • программная инженерия: использует принципы проектирования для создания сложных систем для решения расчетных задач
  • анализ и оценка программного обеспечения, алгоритмов и архитектуры
  • эксперимент: использование экспериментов чтобы выявить принципы вычислений для научного исследования в информатике.

Выводы

Компьютерные науки изучают принципы, приложения и технологии при работе с вычислительной техникой.

Они включает в себя изучение данных, структуры и алгоритмы обработки этих структур, принципы компьютерной архитектуры аппаратного и программного обеспечения, решения проблем и методологий проектирования.

К компьютерной тематике относится численный анализ, исследование операций и искусственный интеллект, язык дизайна, структура и техника машинного перевода.

Информатика занимается информацией в том же смысле, что физика связана с энергией, она посвящена репрезентации, хранению, обработки и представления информации. Информатика или компьютерные науки связаны с изучением символов манипулирования машинами при общении между человеком и машиной с применением этих машин.

Читайте также: