Почему 32 разрядная звуковая карта точнее кодирует и воспроизводит звук чем 16 разрядная

Обновлено: 07.07.2024

Звук — физическое явление , представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных.

Звукозапись — процесс записи звуковой информации с целью ее сохранения и последующего воспроизведения. Звукозапись производится по схеме: микрофон - усилитель электрических колебаний — устройство, воздействующее на носитель записи.

1. Понятие и основные характеристики цифрового звука.

Цифровой звук — это аналоговый (т.е. непрерывный) звуковой сигнал, представленный посредством дискретных (т.е. отдельных) численных значений его амплитуды.

Характеристика цифрового звука:

1. Частота дискретизации - это количество измерений громкости звука за одну секунду. Чем выше частота, тем выше звучание. Высота звука измеряется в герцах (Гц, Hz) или килогерцах (КГц, KHz). 1 Гц = 1/с. То есть колебание в 1 Гц соответствует волне с периодом в 1 секунду.

2. Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука (измеряется в битах).

Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука.

2. Преобразование и воспроизведение звуковой информации.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера:

Аудиоадаптер (звуковая плата) – специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера.

Частота дискретизации – это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за 1 секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц) = 1000 Гц. Характерные частоты дискретизации аудиоадаптеров: 11 кГц, 22 кГц и др.

Разрядность регистра – число бит в регистре аудиоадаптера. Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 = 65536) различных значений. Очевидно, что 16 – разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8 – разрядный.

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ:

Звуковой фай л – файл, хранящий звуковую информацию в числовой двоичной форме. Как правило, информация в звуковых файлах подвергается сжатию.

Процесс оцифровки звука выполняется аналогово-цифровыми преобразователями (АЦП).

Аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в дискретный код (т.е. цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя).

Как правило, АЦП — электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.

3. Принципы оцифровки звука.

Оцифровка звука — технология преобразования аналогового звукового сигнала в цифровой вид. Заключается в осуществлении замеров амплитуды сигнала с определенным временным шагом и последующей записи полученных значений в численном виде. Другое название оцифровки звука — аналогово-цифровое преобразование звука.

Оцифровка звука включает в себя два процесса:

· процесс дискретизации (осуществление выборки) сигнала по времени

· процесс квантования по амплитуде.

Процесс дискретизации по времени — процесс получения значений сигнала, который преобразуется, с определенным временным шагом — шагом дискретизации. Количество замеров величины сигнала, осуществляемых в одну секунду, называют частотой дискретизации или частотой выборки, или частотой сэмплирования (от англ. «sampling» — «выборка»). Чем меньше шаг дискретизации, тем выше частота дискретизации и тем более точное представление о сигнале будет получено. Основная трудность оцифровки заключается в невозможности записать измеренные значения сигнала с идеальной точностью.

Линейное (однородное) квантование амплитуды

Отведём для записи одного значения амплитуды сигнала в памяти компьютера N бит. Значит, с помощью одного N -битного слова можно описать 2 N разных положений. Пусть амплитуда оцифровываемого сигнала колеблется в пределах от −1 до 1 некоторых условных единиц. Представим этот диапазон изменения амплитуды — динамический диапазон сигнала — в виде 2 N −1 равных промежутков, разделив его на 2 N уровней — квантов. Теперь, для записи каждого отдельного значения амплитуды, его необходимо округлить до ближайшего уровня квантования. Этот процесс носит название квантования по амплитуде. Квантование по амплитуде — процесс замены реальных значений амплитуды сигнала значениями, приближенными с некоторой точностью. Каждый из 2 N возможных уровней называется уровнем квантования, а расстояние между двумя ближайшими уровнями квантования называется шагом квантования. Если амплитудная шкала разбита на уровни линейно, квантование называют линейным (однородным).
Точность округления зависит от выбранного количества (2 N ) уровней квантования, которое, в свою очередь, зависит от количества бит (N), отведенных для записи значения амплитуды. Число N называют разрядностью квантования (подразумевая количество разрядов, то есть бит, в каждом слове), а полученные в результате округления значений амплитуды числа — отсчетами или сэмплами (от англ. «sample» — «замер»). Принимается, что погрешности квантования, являющиеся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными.

Таким образом, способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией, ИКМ (англ. Pulse Code Modulation — PCM).

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM (Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц).

В § 26 сказано, что для ввода звука в компьютер используется микрофон, а для вывода — акустические колонки или наушники. Для записи звука в компьютер и его вывода (воспроизведения) из компьютера на динамик требуется звуковая карта (аудиоадаптер). Качество компьютерного звука, прежде всего, определяется частотой дискретизации и разрядностью дискретизации, с которыми работает звуковая карта. Первые звуковые карты, использовавшиеся на ПК, работали на частотах 11 кГц, 22 кГц. Высококачественное воспроизведение звука получается на частотах от 44 кГц и выше.

Разрядность дискретизации связана с размером регистра аудиоадаптера. Наименьший размер регистра — 8 разрядов. В таком случае одно измеренное значение займет 1 байт памяти компьютера, а число различных значений будет равно 2 8 = 256. При 16-разряд- ном регистре каждая величина в памяти займет 2 байта, а число различных значений: 2 16 = 32 768. Существуют устройства с 32- и 64-разрядными регистрами. Чем выше разрядность дискретизации, тем выше точность измерений физической величины, но при этом растет и объем занимаемой памяти.

Цифровой (WAV) и синтезированный (MIDI) форматы звука

Любая звуковая карта может иметь дело с двумя основными форматами компьютерного звука: цифровым (WAV) и синтезированным (MIDI). Способ представления цифрового звука подробно описан в предыдущем разделе.

Другой способ кодирования звука — цифровой интерфейс музыкальных инструментов (Musical Instrument Digital Interface, MIDI). MIDI-файл похож на нотную партитуру, так как в нем указывается:

• какая нота звучит;

• в какое время начинается звучание;

• как долго оно продолжается;

• каким инструментом исполняется звучание.

MIDI-файл — компьютеризированная нотная партитура, используемая для воспроизведения звука. Фактически MIDI-файл — последовательность команд, которыми записаны действия, такие как, например, нажатие клавиши пианино. Поэтому MIDI-файлы по размеру значительно меньше аналогичных цифровых файлов. MIDI- данные по отношению к цифровым данным — это примерно то же самое, что данные векторной графики по отношению к данным растровой графики.

Звуковые карты проигрывают MIDI-файлы, используя встроенный синтезатор. Звучание у этих файлов совершенно особенное: непривычно чистое и в то же время какое-то синтетическое. Большинство инструментов может воспроизводиться на синтезаторе одновременно, создавая впечатление играющего оркестра. Прекрасная оркестровка произведений и чистота звучания доставляют истинное наслаждение любителям электронной музыки. В новой электронной оркестровке великолепно звучат произведения музыкальных классиков: Моцарта, Брамса, Баха и др. Однако MIDI-звук чрезвычайно трудно использовать для воспроизведения разговорной речи.

Создание и редактирование MIDI-данных требуют серьезной профессиональной работы и под силу лишь композиторам или лицам с достаточным музыкальным образованием. Однако проигрывать такие файлы может любой пользователь. Вместе с тем для создания цифрового звука не требуется знания музыкальной теории. Подготовка цифровых аудиофайлов довольно проста и может быть выполнена с помощью программ — редакторов звука. Кроме записи и прослушивания звука эти редакторы позволяют удалять фрагменты аудиозаписи, собирать несколько звуковых файлов в один, смешивать содержимое различных звуковых файлов, применять различные спецэффекты (эхо, нарастание и затухание звука и др.).

Коротко о главном

Качество компьютерного звука определяется частотой дискретизации и разрядностью дискретизации.

Любая звуковая карта может иметь дело с двумя основными форматами компьютерного звука: цифровым и синтезированным. MIDI-файл содержит нотную партитуру для компьютера.


Вопросы и задания

1. Какие элементы звуковой карты отвечают за воспроизведение цифрового и синтезированного звука?

2. Почему 32-разрядная звуковая карта точнее кодирует и воспроизводит звук, чем 16-разрядная?

3. Какая информация хранится в MIDI-файлах?


ЕК ЦОР: Часть 1, дополнение к главе 5. ЦОР № 1-3.


Рассмотрим теоретические аспекты преобразования аналогового (аудио) сигнала в цифровой.
Статья не будет всеохватывающей, но в тексте будут гиперссылки для дальнейшего изучения темы.

Чем отличается цифровой аудиосигнал от аналогового?

Аналоговый (или континуальный) сигнал описывается непрерывной функцией времени, т.е. имеет непрерывную линию с непрерывным множеством возможных значений (рис. 1).



Цифровой сигнал — это сигнал, который можно представить как последовательность определенных цифровых значений. В любой момент времени он может принимать только одно определенное конечное значение (рис. 2).



Аналоговый сигнал в динамическом диапазоне может принимать любые значения. Аналоговый сигнал преобразуется в цифровой с помощью двух процессов — дискретизация и квантование. Очередь процессов не важна.

Дискретизацией называется процесс регистрации (измерения) значения сигнала через определенные промежутки (обычно равные) времени (рис. 3).



Квантование — это процесс разбиения диапазона амплитуды сигнала на определенное количество уровней и округление значений, измеренных во время дискретизации, до ближайшего уровня (рис. 4).



Дискретизация разбивает сигнал по временной составляющей (по вертикали, рис. 5, слева).
Квантование приводит сигнал к заданным значениям, то есть округляет сигнал до ближайших к нему уровней (по горизонтали, рис. 5, справа).



Эти два процесса создают как бы координатную систему, которая позволяет описывать аудиосигнал определенным значением в любой момент времени.
Цифровым называется сигнал, к которому применены дискретизация и квантование. Оцифровка происходит в аналого-цифровом преобразователе (АЦП). Чем больше число уровней квантования и чем выше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому (рис. 6).



Уровни квантования нумеруются и каждому уровню присваивается двоичный код. (рис. 7)



Количество битов, которые присваиваются каждому уровню квантования называют разрядностью или глубиной квантования (eng. bit depth). Чем выше разрядность, тем больше уровней можно представить двоичным кодом (рис. 8).



Данная формула позволяет вычислить количество уровней квантования:

Если N — количество уровней квантования,
n — разрядность, то

Обычно используют разрядности в 8, 12, 16 и 24 бит. Несложно вычислить, что при n=24 количество уровней N = 16,777,216.

При n = 1 аудиосигнал превратится в азбуку Морзе: либо есть «стук», либо нету. Существует также разрядность 32 бит с плавающей запятой. Обычный компактный Аудио-CD имеет разрядность 16 бит. Чем ниже разрядность, тем больше округляются значения и тем больше ошибка квантования.

Ошибкой квантований называют отклонение квантованного сигнала от аналогового, т.е. разница между входным значением и квантованным значением ()

Большие ошибки квантования приводят к сильным искажениям аудиосигнала (шум квантования).

Чем выше разрядность, тем незначительнее ошибки квантования и тем лучше отношение сигнал/шум (Signal-to-noise ratio, SNR), и наоборот: при низкой разрядности вырастает шум (рис. 9).



Разрядность также определяет динамический диапазон сигнала, то есть соотношение максимального и минимального значений. С каждым битом динамический диапазон вырастает примерно на 6dB (Децибел) (6dB это в 2 раза; то есть координатная сетка становиться плотнее, возрастает градация).

рис. 10. Интенсивность шумов при разрядности 6 бит и 8 бит

Ошибки квантования (округления) из-за недостаточного количество уровней не могут быть исправлены.



амплитуда сигнала при разрядности 1 бит (сверху) и 4 бит



50dB SNR
примечание: если аудиофайлы не воспроизводятся онлайн, пожалуйста, скачивайте их.







Теперь о дискретизации.

Как уже говорили ранее, это разбиение сигнала по вертикали и измерение величины значения через определенный промежуток времени. Этот промежуток называется периодом дискретизации или интервалом выборок. Частотой выборок, или частотой дискретизации (всеми известный sample rate) называется величина, обратная периоду дискретизации и измеряется в герцах. Если
T — период дискретизации,
F — частота дискретизации, то


Чтобы аналоговый сигнал можно было преобразовать обратно из цифрового сигнала (точно реконструировать непрерывную и плавную функцию из дискретных, «точечных» значении), нужно следовать теореме Котельникова (теорема Найквиста — Шеннона).

Теорема Котельникова гласит:

Если аналоговый сигнал имеет финитный (ограниченной по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой, строго большей удвоенной верхней частоты.

Вам знакомо число 44.1kHz? Это один из стандартов частоты дискретизации, и это число выбрали именно потому, что человеческое ухо слышит только сигналы до 20kHz. Число 44.1 более чем в два раза больше чем 20, поэтому все частоты в цифровом сигнале, доступные человеческому уху, могут быть преобразованы в аналоговом виде без искажении.

Но ведь 20*2=40, почему 44.1? Все дело в совместимости с стандартами PAL и NTSC. Но сегодня не будем рассматривать этот момент. Что будет, если не следовать теореме Котельникова?

Когда в аудиосигнале встречается частота, которая выше чем 1/2 частоты дискретизации, тогда возникает алиасинг — эффект, приводящий к наложению, неразличимости различных непрерывных сигналов при их дискретизации.



Как видно из предыдущей картинки, точки дискретизации расположены так далеко друг от друга, что при интерполировании (т.е. преобразовании дискретных точек обратно в аналоговый сигнал) по ошибке восстанавливается совершенно другая частота.

Аудиопример 4: Линейно возрастающая частота от

100 до 8000Hz. Частота дискретизации — 16000Hz. Нет алиасинга.



Аудиопример 5: Тот же файл. Частота дискретизации — 8000Hz. Присутствует алиасинг



Пример:
Имеется аудиоматериал, где пиковая частота — 2500Hz. Значит, частоту дискретизации нужно выбрать как минимум 5000Hz.

Следующая характеристика цифрового аудио это битрейт. Битрейт (bitrate) — это объем данных, передаваемых в единицу времени. Битрейт обычно измеряют в битах в секунду (Bit/s или bps). Битрейт может быть переменным, постоянным или усреднённым.

Следующая формула позволяет вычислить битрейт (действительна только для несжатых потоков данных):

Битрейт = Частота дискретизации * Разрядность * Количество каналов

Например, битрейт Audio-CD можно рассчитать так:
44100 (частота дискретизации) * 16 (разрядность) * 2 (количество каналов, stereo)= 1411200 bps = 1411.2 kbit/s

При постоянном битрейте (constant bitrate, CBR) передача объема потока данных в единицу времени не изменяется на протяжении всей передачи. Главное преимущество — возможность довольно точно предсказать размер конечного файла. Из минусов — не оптимальное соотношение размер/качество, так как «плотность» аудиоматериала в течении музыкального произведения динамично изменяется.

При кодировании переменным битрейтом (VBR), кодек выбирает битрейт исходя из задаваемого желаемого качества. Как видно из названия, битрейт варьируется в течение кодируемого аудиофайла. Данный метод даёт наилучшее соотношение качество/размер выходного файла. Из минусов: точный размер конечного файла очень плохо предсказуем.

Усреднённый битрейт (ABR) является частным случаем VBR и занимает промежуточное место между постоянным и переменным битрейтом. Конкретный битрейт задаётся пользователем. Программа все же варьирует его в определенном диапазоне, но не выходит за заданную среднюю величину.

При заданном битрейте качество VBR обычно выше чем ABR. Качество ABR в свою очередь выше чем CBR: VBR > ABR > CBR.

ABR подходит для пользователей, которым нужны преимущества кодирования VBR, но с относительно предсказуемым размером файла. Для ABR обычно требуется кодирование в 2 прохода, так как на первом проходе кодек не знает какие части аудиоматериала должны кодироваться с максимальным битрейтом.

Существуют 3 метода хранения цифрового аудиоматериала:

  • Несжатые («сырые») данные
  • Данные, сжатые без потерь
  • Данные, сжатые с потерями

Несжатый (RAW) формат данных

содержит просто последовательность бинарных значений.
Именно в таком формате хранится аудиоматериал в Аудио-CD. Несжатый аудиофайл можно открыть, например, в программе Audacity. Они имеют расширение .raw, .pcm, .sam, или же вообще не имеют расширения. RAW не содержит заголовка файла (метаданных).

Другой формат хранения несжатого аудиопотока это WAV. В отличие от RAW, WAV содержит заголовок файла.

Аудиоформаты с сжатием без потерь

Принцип сжатия схож с архиваторами (Winrar, Winzip и т.д.). Данные могут быть сжаты и снова распакованы любое количество раз без потери информации.

Как доказать, что при сжатии без потерь, информация действительно остаётся не тронутой? Это можно доказать методом деструктивной интерференции. Берем две аудиодорожки. В первой дорожке импортируем оригинальный, несжатый wav файл. Во второй дорожке импортируем тот же аудиофайл, сжатый без потерь. Инвертируем фазу одного из дорожек (зеркальное отображение). При проигрывании одновременно обеих дорожек выходной сигнал будет тишиной.

Это доказывает, что оба файла содержат абсолютно идентичные информации (рис. 11).



Кодеки сжатия без потерь: flac, WavPack, Monkey’s Audio…

При сжатии с потерями

акцент делается не на избежание потерь информации, а на спекуляцию с субъективными восприятиями (Психоакустика). Например, ухо взрослого человек обычно не воспринимает частоты выше 16kHz. Используя этот факт, кодек сжатия с потерями может просто жестко срезать все частоты выше 16kHz, так как «все равно никто не услышит разницу».

Другой пример — эффект маскировки. Слабые амплитуды, которые перекрываются сильными амплитудами, могут быть воспроизведены с меньшим качеством. При громких низких частотах тихие средние частоты не улавливаются ухом. Например, если присутствует звук в 1kHz с уровнем громкости в 80dB, то 2kHz-звук с громкостью 40dB больше не слышим.


Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера.

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ.

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

  • Частотой дискретизации
  • Разрядностью(глубина звука).

Частота временной дискретизации

- это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

N = 2 I = 2 16 = 65536, где I — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме.

2. Повторяем единицы измерения информации

1 Кбайт = 2 10 байт=1024 байт

1 Мбайт = 2 10 Кбайт=1024 Кбайт

1 Гбайт = 2 10 Мбайт=1024 Мбайт

1 Тбайт = 2 10 Гбайт=1024 Гбайт

1 Пбайт = 2 10 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник [1]

4. Решение задач

Учебник [1], показ решения на презентации.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

Запись условия

Решение

1536000 бит/8 =192000 байт/1024 = 187,5 Кбайт

Задача (самостоятельно). Учебник [1], показ решения на презентации.
Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

Запись условия

Решение

10 × 8 × 22 050 бит/8 = 220500 байт/1024 = 215,332/1024 Кбайт = 0,21 Мбайт

5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

Запись условия

Решение

(120 × 16 × 44 010) бит = 84672000 бит/8= 10584000байт/1024 = 10335,9375 Кбайт/1024 = 10,09 Мбайт

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

Запись условия

Решение

I × H= 2,6 Мб/1 мин. = 2,6×1024×1024×8 бит/ 60 сек=21810380,8/60=

Если I=8 ,бит, то H=44,1 кГц.

Если I=16 бит, то H=22,05 кГц.

Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации — 22 050 Гц. Какова раз­рядность аудиоадаптера?

Объем свободной памяти на диске — 0,1 Гб, разрядность зву­ковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

Ответы

№ 92. 124,8 секунды.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти — 15,1 Мб.

№ 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11 кГц, разрядность аудиоадаптера — 8. Длительность звучания равна 60,5 с.

Содержимое разработки

Кодирование звуковой информации. Подготовка к ЕГЭ

Славянская Лариса Владимировна

Учитель информатики

Лицей № 9 город Волгоград

Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера:


Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ:


Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.


Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

Частота временной дискретизации

- это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

N = 2 I = 2 16 = 65536, где I — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме.

2. Повторяем единицы измерения информации

1 Кбайт = 2 10 байт=1024 байт

1 Мбайт = 2 10 Кбайт=1024 Кбайт

1 Гбайт = 2 10 Мбайт=1024 Мбайт

1 Тбайт = 2 10 Гбайт=1024 Гбайт

1 Пбайт = 2 10 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник [1]

4. Решение задач

Учебник [1], показ решения на презентации.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

Запись условия

V=1 ×16 × 48 000 × 2=

1536000 бит/8 =192000 байт/1024 = 187,5 Кбайт

Задача (самостоятельно). Учебник [1], показ решения на презентации.
Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

Запись условия

10 × 8 × 22 050 бит/8 = 220500 байт/1024 = 215,332/1024 Кбайт = 0,21 Мбайт

5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

Запись условия

V=2×60 ×16 × 44,1 × 1=

(120 × 16 × 44 010) бит = 84672000 бит/8= 10584000байт/1024 = 10335,9375 Кбайт/1024 = 10,09 Мбайт

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

Запись условия

V= T ×I × H × 1; I × H= V / T

I × H= 2,6 Мб/1 мин. = 2,6×1024×1024×8 бит/ 60 сек=21810380,8/60=

Если I=8 ,бит, то H=44,1 кГц.

Если I=16 бит, то H=22,05 кГц.

Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации — 22 050 Гц. Какова раз­рядность аудиоадаптера?

Объем свободной памяти на диске — 0,1 Гб, разрядность зву­ковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

№ 92. 124,8 секунды.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти — 15,1 Мб.

№ 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11 кГц, разрядность аудиоадаптера — 8. Длительность звучания равна 60,5 с.

1. Учебник: Информатика, задачник-практикум 1 том, под редакцией И.Г.Семакина, Е.К. Хеннера )

2. Фестиваль педагогических идей «Открытый урок»Звук. Двоичное кодирование звуковой информации. Супрягина Елена Александровна, учитель информатики.

3. Н. Угринович. Информатика и информационные технологии. 10-11 классы. Москва. Бином. Лаборатория знаний 2003.


-75%

Читайте также: