Принцип работы магнитной цепи в ноутбуке

Обновлено: 03.07.2024

Магнитные цепи электрических аппаратов

Магнитной цепью электрического аппарата называется совокупность его элементов, через которые замыкается магнитный поток. Магнитный поток в аппаратах создается главным образом обмотками, обтекаемыми током, значительно реже применяются постоянные магниты.

Магнитная система электротехнического изделия (устройства) - часть электротехнического изделия (устройства), представляющая совокупность ферромагнитных деталей, предназначенную для проведения в ней основной части магнитного потока (ГОСТ 18311-80).

Магнитная система, т. е. сочетание элементов аппарата, создающих магнитное поле, состоит из двух основных частей:

1) сердечника электромагнита, представляющего собой неподвижную часть электропровода, на которой установлена обмотка;

2) подвижной части системы, называемой якорем электромагнита.

При подключении катушки электромагнита к источнику питания часть электроэнергии, получаемой катушкой, превращается в тепловую вследствие потерь энергии в сопротивлении проводников обмотки, а остальная энергия расходуется на создание магнитного поля.

Магнитный поток, проходящий через якорь, создает электромагнитное усилие, вызывающее притяжение якоря к сердечнику. Таким образом, часть магнитной энергии, сообщаемая катушке электромагнита, превращается при движении якоря в механическую энергию.


Рис. 1. Назначение магнитных цепей электрических аппаратов
Все электромагнитные аппараты дистанционного управления (реле, пускатели, контакторы) работают пропуская магнитный поток через свои магнитные цепи.

Магнитные системы аппаратов могут быть подразделены:

а) системы постоянного тока

б) системы переменного тока.

2. По способу действия:

3. По характеру движения якоря магнитные системы разделяются на магниты:

а) с поступательным движением якоря

б) с поворотным якорем, имеющим вращательное движение.

4. По способу включения различают магнитные системы с включением обмотки электромагнита в питающую сеть последовательно и параллельно. В первом случае обмотка должна быть рассчитана на полный ток, определяемый приёмниками энергии, и сравнительно, небольшое напряжение. Во втором случае обмотка предназначается для питания полным напряжением при сравнительно небольшом токе.

5. Магнитные системы аппаратов могут иметь различный режим, работы, определяющий условия их нагревания. Так же как для двигателей, для аппаратов различают три основных режима: длительный режим, кратковременный и повторно-кратковременный.

6. Электромагнитные системы аппаратов разделяются также по их конструкции.

На рис. 2 приведены наиболее распространенные конструкции магнитных систем аппаратов.

Формы магнитных систем электромагнитных аппаратов

Рис. 2. Формы магнитных систем электромагнитных аппаратов

На рис. 2,а показан электромагнит клапанного типа, применяемый как для постоянного, так и для переменного тока. При отключении катушки от источника тока якорь отпадает от сердечника электромагнита под действием отключающей пружины.

На рис. 2,б изображено устройство электромагнита постоянного тока с поворотным якорем, стремящимся установиться в горизонтальное положение, преодолевая сопротивление отключающей спиральной пружины. Якорь электромагнита броневого типа, представленного на рис. 2,в, при включении втягивается внутрь катушки.

Электромагниты, показанные на рис. 2,г и д, носят названия электромагнитов П-образного и Ш-образного типа. Если такой электромагнит используется в электрических аппаратах переменного тока, его магнитопровод выполняется в виде набора листовой стали.

Между якорем и сердечником электромагнита устанавливается обычно прокладка из немагнитного материала толщиной порядка 0,2 - 0,5 мм. Эта прокладка предотвращает так называемое "магнитное прилипание" якоря к сердечнику при отключении катушки от сети, обусловленное полем остаточного магнетизма. Немагнитная прокладка показана на рис. 2,г.

Электромагнитное реле

Рис. 3. Электромагнитное реле

Тяговой характеристикой электромагнита называется зависимость тягового усилия от величины воздушного зазора между якорем и сердечникам.

В зависимости от формы магнитопровода, рода тока, питающего катушки, а также от величины магнитного зазора форма тяговой характеристики может быть различной.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Привет, Хабр! С недавнего времени я стал задумываться об актуальности статей и заметил, что на Хабре нет ни одной обзорной статьи про магнитные цепи. Как так!? Ведь это. а что это такое?

Действительно, наверняка даже самые отстраненные от инженерного дела люди имеют представление о том, что такое электрические цепи, но возможно, что про магнитные цепи не слышали вовсе. Каждый школьник когда-то в учебнике физики наблюдал разные схемы и формулы, описывающие законы Ома. Но магнитные цепи в рамки школьного курса не входят.

Я решил написать данную статью, чтобы показать, насколько удивителен мир физики и заинтересовать школьников в её изучении. В данной статье, однозначно, для полноты вещей будут и выводы формул и использование некоторых математических операций, которые могут быть известны не всем, но такие моменты я постараюсь сгладить. Приступим!

Что нужно вспомнить?

Для более четкого представления сей статьи, неплохо бы вспомнить основные характеристики самого магнитного поля: вектор магнитной индукции, вектор напряженности, поток вектора магнитной индукции - а также нужно вспомнить немного про магнитные вещества, а именно про ферромагнетики.


Полагается, что вам известен обобщенный закон Ома и помнится, что такое ток, напряжение и сопротивление. Если нет, то крайне советую обратиться к сторонним ресурсам, чтобы иметь хотя бы общее представление о том, что последует далее. Крайне советую учебник И.Е. Иродова «Электромагнетизм» .

Применение магнитных цепей

Магнитные цепи находят очень большое поле применения, а именно, они используются для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в некоторых случаях, определенными потерями. В электротехнической промышленности широко используется взаимная зависимость магнитной и электрической энергий, переход из одного состояния в другое. На подобном принципе работают, например, трансформаторы, разные электродвигатели, генераторы и другие устройства.


Конечно, можно продолжительное время говорить об устройствах, разных типах магнитопроводов (про которые речь пойдет далее), но наша первичная цель - рассмотреть выводы основных характеристик магнитных цепей. Продолжаем!

Как устроены магнитные цепи?

Магнитную цепь, на самом деле, не так сложно представить, как может показаться человеку, который о них впервые слышит. Обычно магнитные цепи представляют из себя некоторые фигуры из ферромагнитного сердечника с источником или несколькими источниками ПОтока. Пожалуй, один из самых простых примеров с одним источником, который можно взять на вооружение, проиллюстрирован ниже:


Перед продолжением обусловимся, что среди электротехников сердечник называют магнитопроводом. Часть магнитопровода, на которой отсутствуют обмотки и которая служит для замыкания магнитной цепи, называется «ярмо».

Начнем с тороидального сердечника. Такой тороидальный сердечник может служить формой для катушки, как бы странно это не звучало. Но что за катушка? Ну, первое что приходит в голову - провод, образующий витки. Хорошо, но какого его предназначение? Вернемся к электрическим цепям и вспомним, что существуют источники тока / напряжения, так называемые активные элементы. Так вот, в магнитных цепях роль источника выполняют катушки с током, накрученные на основной элемент магнитной цепи - ферромагнитный магнитопровод.

Вспомним теперь про ферромагнитные материалы. Почему именно они? Дело в том, что благодаря высокому значению магнитной проницаемости, что сигнализирует о хорошей намагниченности ферромагнетика, силовые линии магнитного поля практически не выходят за пределы сердечника, либо не выходят вовсе. Однако это будет справедливо лишь тогда, когда наш сердечник замкнутый, либо имеет небольшие зазоры. То есть, ферромагнетики обладают сильно выраженными магнитными свойствами, когда как у парамагнетиков и диамагнетиков они значительно слабее, что можно наблюдать на следующем графике зависимости намагниченности от напряженности магнитного поля:


Вещества, которые входят в конструкцию магнитопровода, могут обладать не только сильномагнитными свойствами, но также и слабомагнитными. Однако мы рассматриваем сердечник из ферромагнитного материала.

Ещё из школьного курса мы представляем себе картину с линиями магнитной индукции соленоида, мы можем визуально представить его поле и понимаем, что концентрация силовых линий, их насыщенность, наибольшая в центре рассматриваемого соленоида. Тут очень важно вспомнить правило буравчика, чтобы правильно указать направление силовых линий.


Отсюда становится ясно, что катушки-источники порождают магнитное поле, а следовательно и поток линий магнитной индукции. Такие линии будут циркулировать по нашему сердечнику, словно повторяя его форму. Именно поэтому нам важно условие замкнутости сердечника и материал, из которого он сделан. Положим, что наш воображаемый сердечник замкнут. Из этого следует, что и силовые линии замкнуты, а следовательно выполняется теорема Гаусса для магнитного поля, которая гласит: поток линий магнитной индукции через замкнутую поверхность равен нулю. Стоит учесть, что поток адаптируется под площадь сечения.*


Ну и в конечном счете ферромагнитный сердечник поток куда-то передает! Аналогичным образом замкнутый проводник позволяет передать электрический ток.

Отлично! Мы разобрались с тем, что такое магнитные цепи и даже вспомнили про теорему Гаусса и ферромагнетики. Теперь поговорим о том, какие следствия вытекают из теоремы Гаусса и возможности пренебрежения полем вне сердечника и в зазорах.

1] Магнитные потоки Ф1 и Ф2 через произвольные сечения будут равны между собой.

2] В узле (разветвлении) сердечника алгебраическая сумма потоков (с учетом их направлений) будет равна нулю. Мне одному это что-то напоминает?

То есть мы окончательно сформулировали, что замкнутая (или почти замкнутая) система из ферромагнитных сердечников может рассматриваться как проводящая цепь. В нашем случае - магнитная.

Расчет магнитных цепей

Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи - силу тока. Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа. Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):

Криволинейный интеграл по замкнутому контуру от напряженности магнитного поля будет равен алгебраической сумме токов, сцепленных (окруженных) данным контуром.


Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:


Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.


Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.

Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:

В любой момент времени алгебраическая сумма напряжений на ветвях контура равна нулю.

Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.


Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:

Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;

Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;

После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;

Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).

Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.

А примеры расчетов будут?

Здесь - нет. А по ссылке - да! В данном документе Самарского государственного технического университета рассмотрены базовые примеры, которые позволят лучше разобраться в теме, если она вас заинтересовала. Помимо всего прочего, там же приведены теоретические справки. Советую прочитать в надежде, что вы сможете для себя что-то новое подчерпнуть.

Заключение

Во-первых, спасибо, что дочитали статью! Один из способов поддержать меня как автора - подписаться на мой паблик Вконтакте, где иногда выходят «локальные статьи».

Во-вторых, вернемся к началу статьи. Там я задался целью показать, почему физика удивительна. Не хочу быть многословным, поэтому просто попрошу вспомнить все то, что было описано выше. Мы оперировали моделями, которые относятся к разделу физики электричества и перенесли их на физику магнетизма. Наверняка, вы замечали, насколько часто встречаются элементы механики в иных разделах. Это по истине удивительно! Однако главное не поработиться иллюзией, что в мире все законы нам предельно известны.

Магнитная цепь — последовательность магнетиков, по которым проходит магнитный поток. Различают замкнутые магнитные цепи, в которых магнитный поток почти полностью проходит в ферромагнитных телах, и с зазором (например, воздушным). Понятием магнитная цепь широко пользуются при электротехнических расчетах трансформаторов, электрических машин, реле и др. Простейшая магнитная цепь — сердечник кольцевой катушки.

Магнитодвижущая сила (МДС) — физическая величина, характеризующая способность электрических токов создавать магнитные потоки. Используется при расчетах магнитных цепей; аналог ЭДС в электрических цепях.


Величина измеряется в амперах (СИ) или же в гилбертах (СГС), причём 1А = = 1,257 Гб. На практике для обозначения единицы МДС часто используется термин «ампер-виток», численно равный единице в СИ.


Магнитодвижущая сила в индукторе или электромагните вычисляется по формуле:


Выражение для магнитного потока в магнитной цепи, также известное как закон Хопкинса, имеет следующий вид:


где — величина магнитного потока, — магнитное сопротивление проводника. Данная запись является аналогом закона Ома в магнитных цепях.

Классификация магнитных цепей.

- магнитные цепи с постоянной МДС (магнитодвижущей силой)

- магнитные цепи с переменной МДС

- однородные мц, у которых на всей длине магнитные цепи сечение, материал и индукция одинаковой по всей длине мц

По количеству источников МДС



- разветвлённые мц - неразветвлённые



По наличию воздушных зазоров.



Основные законы магнитных цепей.

В основе расчета магнитных цепей лежат два закона

Таблица 1. Основные законы магнитной цепи

Наименование закона Аналитическое выражение закона Формулировка закона
Закон (принцип) непрерывности магнитного потока
Поток вектора магнитной индукции через замкнутую поверхность равен нулю
Закон полного тока
Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром

При анализе магнитных цепей и, в первую очередь, при их синтезе обычно используют следующие допущения:


- магнитная напряженность, соответственно магнитная индукция, во всех точках поперечного сечения магнитопровода одинакова

- потоки рассеяния отсутствуют (магнитный поток через любое сечение неразветвленной части магнитопровода одинаков);

- сечение воздушного зазора равно сечению прилегающих участков магнитопровода.

Это позволяет использовать при расчетах законы Кирхгофа и Ома для магнитных цепей, вытекающие из законов, сформулированных в табл. 1.

Таблица 2. Законы Кирхгофа и Ома для магнитных цепей

Наим. закона Аналитическое выражение закона Формулировка закона
Первый закон Кирхгофа
Алгебраическая сумма магнитных потоков в узле магнитопровода равна нулю
Второй закон Кирхгофа
Алгебраическая сумма падений магнитного напряжения вдоль замкнутого контура равна алгебраической сумме МДС, действующих в контуре
Закон Ома
где
Падение магнитного напряжения на участке магнитопровода длиной
равно произведению магнитного потока и магнитного сопротивления
участка

Сформулированные законы и понятия магнитных цепей позволяют провести формальную аналогию между основными величинами и законами, соответствующими электрическим и магнитным цепям, которую иллюстрирует табл.

Устройства, которые предназначены (основное их назначение) для автоматического включения и отключения трехфазных электрических двигателей от сети, а также их реверсирования называют магнитными пускателями. Как правило, они используются для управления асинхронными электродвигателями с напряжением питания до 600 В. Пускатели могут быть реверсивные и не реверсивные. Кроме того, в них довольно часто встраивается тепловое реле для защиты электрических машин от перегрузки по току в длительном режиме.

Магнитные пускатели могут выпускаться в различных исполнениях:

  • Реверсивные;
  • Не реверсивные;
  • Защищенного типа – устанавливаются в помещениях, где в окружающей среде не содержится большого количества пыли;
  • Пыленепроницаемые – устанавливаются в местах, где они не будут подвергаться прямому воздействию на них солнца, дождя, снега (при наружном размещении располагаются под навесом);
  • Открытого типа – предназначены для установки в местах, защищенных от попаданий посторонних предметов а также пыли (шкафы электрические и прочее оборудование)

Магнитный пускатель

Устройство магнитного пускателя

Устройство магнитного пускателя довольно простое. Он состоит из сердечника, на котором помещена втягивающая катушка, якоря, пластмассового корпуса, механических индикаторов включения, а также основных и вспомогательных блок – контактов.

Принцип работы магнитного пускателя

Давайте рассмотрим на примере, показанном ниже:

Принцип работы магнитного пускателя

При подаче напряжения на катушку пускателя 2, протекающий в ней ток притянет якорь 4 к сердечнику 1, следствием чего станет замыкание силовых контактов 3, а также замыкание (или размыкание в зависимости от исполнения) вспомогательных блок контактов, которые в свою очередь, сигнализируют в систему управления о включении или отключении устройства. При снятии напряжения с катушки магнитного пускателя под действием возвратной пружины контакты разомкнутся, то есть вернутся в свое начальное положение.

Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных. Отличие заключается в чередовании фаз, которые подключает к пускателям (А – В – С одно устройство, С – В – А другое устройство). Это условие необходимо для выполнения реверса двигателя переменного тока. Также при реверсивном включении магнитных пускателей предусматривается блокировка одновременного включения устройств, чтоб избежать короткого замыкания.

Реверсивный магнитный пускатель

Схемы включения магнитных пускателей

Одна из простейших схем подключения магнитного пускателя показана ниже:

Схема-пуска-электропривода-с-магнитным-пускателем

Принцип работы данной схемы довольно прост: при замыкании автоматического выключателя QF собирается схема питания катушки магнитного пускателя. Предохранитель PU обеспечивает защиту схемы управления от коротких замыканий. При нормальных условиях контакт тепловых реле Р замкнут. Итак, для запуска асинхронника нажимаем кнопку «Пуск», цепь замыкается, через катушку магнитного пускателя КМ начинает протекать ток, сердечник втягивается, тем самым замыкая силовые контакты КМ, а также блок контакт БК. Блок контакт БК нужен для того, чтоб замкнуть цепь управления, поскольку кнопка после того как ее отпустят, вернется в исходное положение. Для остановки этой электродвигателя достаточно нажать кнопку «Стоп», которая разберет схему управления.

При длительном токе перегрузке сработает тепловой датчик Р, который разомкнет контакт Р, и это тоже приведет к остановке машины.

При схеме включения приведенной выше следует учесть напряжение номинальное катушки. Если напряжение катушки 220 В, а двигателя (при соединении в звезду) 380 В, то данную схему употреблять нельзя, а можно применить с нейтральным проводником, а если в обмотки двигателя соединены треугольником (220 В), то данная система вполне жизнеспособна.

Схема с нейтральным проводником:

Посмотреть как подключить не реверсивное магнитное пусковое устройство вы можете здесь:

Реверсивная схема включения показана ниже:

И видео подключения реверсивного магнитного пускового устройства:

Советы по монтажу магнитных пускателей

При монтаже магнитных пусковых устройств с тепловыми реле необходимо устанавливать с минимальной разностью температур окружающей среды между электродвигателем и магнитным пусковым устройством.

Нежелательна установка магнитных устройств в местах подверженных сильным ударам или вибрациям, а также рядом с мощными электромагнитными аппаратами, токи которых превышают 150 А, так как они при срабатывании создают довольно большие удары и толчки.

Для нормальной работы теплового реле температура окружающей среды не должна превышать 40 0 С. Также не рекомендуется установка рядом с нагревательными элементами (реостаты) и не устанавливать их в наиболее нагреваемых частях шкафа, например вверху шкафа.

Сравнение магнитного и гибридного пускателя:

Магнитной цепью называется устройство, отдельные участки которого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток. Примерами простейших цепей могут служить магнитопроводы кольцевой катушки и электромагнита, изображенного на рис. 6.11, а. Электрические машины и трансформаторы, электромагнитные аппараты и приборы имеют обычно магнитные цепи более сложной формы.

Магнитная цепь

Рис. 6.11 Магнитные цепи (а — неразветвленная, б — разветвленная)

Если магнитная цепь выполнена из одного и того же материала и имеет по всей длине одинаковое сечение, то цепь называется однородной .

Если же отдельные участки цепи изготовлены из различных ферромагнитных материалов и имеют различные длины и сечения, то цепьнеоднородная.

Магнитные цепи, так же как и электрические, бывают разветвленные (рис. 6.11,6) и неразветвленные (рис. 6.11,а).

В неразветвленных цепях магнитный поток Ф во всех сечениях имеет одно и то же значение.

Разветвленные цепи могут быть симметричными и несимметричными. Цепь, представленная на рис. 6.11,6, считается симметричной, если правая и левая части ее имеют одинаковые размеры, выполнены из одного и того же материала и если МДС I1W1 и I2W2 одинаковы. При невыполнении хотя бы одного из указанных условий цепь будет несимметричной.

Разобьем неразветвленную магнитную цепь, например, на рис 6.11, а на ряд однородных участков, каждый из которых выполнен из определенного материала и имеет одинаковое поперечное сечение S вдоль всей своей длины. Длину каждого участка L будем считать равной длине средней магнитной линии в пределах этого участка. Из сказанного выше следует, что магнитные потоки всех участков неразветвленной цепи равны, т. е.

и поле на каждом участке можно считать однородным, т. е. Ф= BS; поэтому

формула магнитного напряжения

Где n — число участков цепи. Магнитное напряжение на любом из участков магнитной цепи

Где H — Напряженность, (измеряется в ампер на метр А/М).

B — Магнитная индукция (измеряется в теслах Тл).

L — Длинна средне силовой линии проходящей через центр поперечного сечения магнитопровода.

S — площадь поперечного сечения магнитопровода.

— Магнитная постоянная.

μr Магнитная проницаемость ферромагнетиков.

При заданном направлении тока в обмотке направление потока и МДС IW определяется по правилу буравчика.

Магнитное сопротивление и закон Ома для магнитной цепи.

По аналогии с электрической цепью величину

называют магнитным сопротивлением участка магнитной цепи (измеряется в 1/Гн).

Таким образом, магнитное напряжение Выражение (3) по аналогии с электрической цепью часто называют законом Ома для магнитной цепи Однако вследствие нелинейности цепи, вызванной непостоянством магнитной проницаемости μr ферромагнетиков, оно практически не применяется для расчета магнитных цепей.

Законы Кирхгофа для магнитной цепи

При расчетах разветвленных магнитных цепей пользуются двумя законами Кирхгофа, аналогичными законам Кирхгофа для электрической цепи.

Первый закон Кирхгофа непосредственно вытекает из непрерывности магнитных линий, т.е. и магнитного потока; алгебраическая сумма магнитных потоков в точке разветвления равна нулю:

Например, для узла а на рис. 6.11,б

Второй закон Кирхгофа для магнитной цепи

Второй закон Кирхгофа для магнитной цепи основывается на законе полного тока: алгебраическая сумма магнитных напряжений на отдельных участках цепи равна алгебраической сумме МДС:

https://electrikam.com/wp-content/uploads/2017/10/20171003135809.jpg

Например, для левого контура и а рис. 6.11, б Как следует из закона Ома, для получения наибольшего магнитного потока при наименьшей МДС у магнитной цепи должно быть возможно меньшее магнитное сопротивление. Большая магнитная проницаемость ферромагнитных материалов обеспечивает получение малых магнитных сопротивлений магнитопроводов из этих материалов. Поэтому магнитные цепи электрических машин выполняют преимущественно из ферромагнетиков, а участки цепей из неферромагнитных материалов, то есть неизбежные или необходимые воздушные зазоры, делают, как правило, возможно малыми.

Магнитная цепь электрической машины с явно выраженными полюсами

Схема устройства магнитной цепи двухполюсной машины с явно выраженными полюсами показана на рис. 6.12.

Рис. 6.12 Магнитная цепь электрической машины с явно выраженными полюсами

Плоскость 00′, проведенная через середины полюсов N и S и ось машины, делит магнитную цепь на две симметричные части. В каждой из них магнитный поток Ф/2 замыкается через полюсы П, полюсные наконечники ПН, воздушные зазоры, якорь Я и станину машины С. Магнитодвижущая сила создается током в обмотке возбуждения ОВ, расположенной на полюсах N и S. Из северного полюса N магнитные линии выходят и в южный полюс S входят.

Магнитная цепь электрической машины с неявно выраженными полюсами

Рис, 6.13. Магнитная цепь электрической машины с неявно выраженными полюсами

Схема устройства магнитной цепи двухполюсной машины с неявно выраженными полюсами показана на рис. 6.13. Здесь обмотка возбуждения заложена в пазы ротора Р — вращающейся части машины, укрепленной на валу. Как и в предыдущем случае, плоскость 00′, проведенная через середины полюсов N и S, делит магнитную цепь машины на две симметричные части, в каждой из которых магнитный поток Ф/2. Магнитный поток замыкается через ротор машины, воздушные зазоры и станину машины С, представляющую собой неподвижный наружный стальной цилиндр — статор машины.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Читайте также: