Принципы функционирования беспроводной связи wi fi

Обновлено: 04.07.2024

Пора. Иначе зачем? Каждый уважающий — должен. Давайте.

Принцип работы

Wi-Fi — это технология беспроводной связи, которую используют компьютеры, телефоны, планшеты и многие другие потребительские устройства. Это не единственная технология беспроводной связи — есть много других, для разных целей. Но вайфай — самый попсовый, и вы с ним за жизнь точно встречались.

  1. Где-то стоит Wi-Fi-точка — по-нашему, хотспот или излучатель. В него встроены одна или несколько антенн.
  2. На антенны подаётся специальный ток. Ток излучается в виде электромагнитных волн. Получается излучение, похожее на излучение микроволновки или радиостанции.
  3. Излучение разлетается во все стороны, проходит сквозь воздух, бетон и металл, частично путается в местных атомах, частично глушится, но всё-таки долетает до наших компьютеров и смартфонов.
  4. На компьютерах тоже стоят Wi-Fi-устройства. Они ловят излучение своими антеннами, вычленяют из него сигнал и отправляют ответ так же, по радио.
  5. Все местные Wi-Fi-устройства одновременно ловят все беспроводные сигналы и вычленяют из них только те, которые касаются конкретно этого устройства.

Это похоже на разговор в шумном ресторане: ваши уши слышат одновременно все разговоры за соседними столиками, но ваш мозг вычленяет только голос вашего собеседника.

На дворе почти 2020 год, и сейчас почти все точки доступа также являются роутерами — то есть устройствами, которые пуляют ваши запросы туда-сюда по адресам. Если к такому роутеру подключить кабель с интернетом, роутер увидит это в своей таблице адресов и сможет объявить всем подключённым ребятам: «У меня есть интернет! Если что-то оттуда нужно — скажите, я дам». И тогда все устройства, подключённые к этому роутеру, смогут выйти в интернет, получая данные по воздуху.

Подключение

Если вам не нужен вайфай или вы уже подключены, ваши Wi-fi-устройства игнорируют эти позывные. Но когда вам нужно подключиться к вайфаю, вы открываете в телефоне список доступных сетей — тогда устройство начинает слушать эфир на предмет таких позывных. Вы выбираете нужную сеть, и дальше всё зависит от её типа.

Вайфай — это не особо безопасно

Весь вайфай — это сплошная каша из электромагнитных волн. Когда компьютер настраивается на волны нужной частоты, вам может казаться, что роутер как будто отправляет ему сигнал. На самом деле роутер отправляет сигнал «в космос». И вот уже ваше устройство вычленяет из общей каши конкретно те сигналы, которые предназначены именно ему.

При большом желании можно посидеть с антенной и послушать весь «сырой» трафик, который передаётся в эфир в этой местности — так же, как можно подслушать полицейскую рацию.

Понимая это, инженеры вайфая придумали разные способы защиты сетей.

Защиты нет: открытая сеть

К ней может подключиться кто угодно, пароль не нужен. Примеры таких сетей — бесплатный Wi-Fi в кафе, на вокзалах, в гостиницах и аэропортах. Весь трафик виден всем, его легко перехватить и расшифровать — защита нулевая. С тем же успехом можно встать посреди кафе и громко, выразительно так проговорить: «Зайду, пожалуй, на Порнхаб».

Если вы подключитесь к открытой сети в кафе и зайдёте в свою почту по логину и паролю без шифрования, то злоумышленник может перехватить ваш трафик и получить доступ к вашей почте.

Если сделать такую сеть дома, то интернетом бесплатно будут пользоваться все, включая соседей и ребят на лавочке во дворе, если до них будут долетать ваши радиоволны.

Наконец, сам злоумышленник может раскатать посреди кафе открытый вайфай, собрать на него соединения ничего не подозревающих посетителей и спокойно читать их трафик как открытую книгу. Достаточно назвать вайфай как-то типа Free Cafe Wifi.

Как защититься: возьмите за правило не подключаться к сетям без пароля. Если оказались в тяжёлой жизненной ситуации и ничего кроме открытых сетей рядом не вещает, используйте VPN: это дополнительное шифрование вашего трафика.

Пароль есть, защиты нет: WEP

Теоретически это уже защищённая сеть, но на практике протокол шифрования настолько слабый, что взломать его можно за несколько минут. Считайте, что он ничем не отличается от открытой сети, только тут требуют пароль при входе.

WEP — самая вредная защита для Wi-Fi. Она даёт иллюзию безопасности, хотя на деле её нет.

Что делать: проверьте, на какую систему защиты настроен ваш роутер. То, что у него стоит пароль, ещё не значит, что вы защищены. Используйте VPN.

Какая-никакая защита: WPA2

Тут всё получше: на входе вам тоже придётся ввести пароль, и если он совпадёт с тем, что записан в точке доступа — вас пустят. Защита более стойкая, но в определённых случаях это сделать тоже возможно. Для обычного бытового использования такой системы защиты уже хватит.

Что делать: радоваться, что у вас хорошая защита. Продолжать использовать VPN для шифрования трафика.

Как ещё можно защититься

Можно настроить беспроводную сеть так, чтобы она не транслировала свои позывные в эфир. Тогда узнать о существовании вашей сети можно будет, только если у вас особенное оборудование и вы точно знаете, что искать. То есть спецслужбы вас вычислят, а хитрый сосед уже нет.

Это создаст и некоторые трудности: чтобы подключиться к такой сети, вам придётся знать и её пароль, и её название, и тип защиты. Если к вам придут гости, уже мало будет сказать пароль — им придётся лезть в настройки и подключаться по полной программе. Или пусть с телефонов сидят.

Скорость работы и расстояние

Общее правило такое: скорость соединения — это скорость самого медленного устройства. Если у вас шустрый роутер, но медленный модуль в телефоне, то и беспроводной интернет в телефоне тоже будет медленным. При этом если в той же сети есть компьютер с быстрым Wi-Fi-модулем, то телефон на скорость соединения никак не повлияет. Но если у вас старый Wi-Fi-роутер, то он может тормозить всю сеть.

Если говорить про расстояние, то чаще всего работает так: чем быстрее, тем меньше зона покрытия.

Сейчас стандартная скорость домашнего роутера — 300 мегабит в секунду. Этого достаточно, чтобы на всех устройствах был быстрый интернет и чтобы он был доступен в любой точке квартиры. Если квартира большая или сеть нужна в частном доме, ставят дополнительные роутеры или повторители сигнала. Они расширяют зону сети и распределяют нагрузку между собой.

Большое влияние на скорость может оказывать планировка квартиры или материал стен. Если радиоволны в принципе плохо проходят стены со стальной арматурой, вайфаю тоже будет тяжело. Впрочем, всё зависит от конкретной арматуры и конкретной частоты вайфая.

Правда ли, что от вайфая может быть онкология или отставание в умственном развитии ребёнка?

Сейчас наука считает, что конкретно от вайфая ничего не будет: роутеры далеко, в бытовых условиях волны маломощные. Но если положить точку доступа промышленного класса под подушку и так спать по 12 часов в день, то будет.

Если решите, что вайфай вам всё-таки вреден, не забывайте, что помимо вайфая у вас в квартире полно радиоустройств, а одна микроволновка жарит так, как не снилось десяткам вайфайных точек доступа. Также все ваши соседи жарят вайфаем во все стороны.

С другой стороны, если подключать свои компьютеры к интернету через провод, скорость, скорее всего, будет выше. Менее удобно, но зато быстро. Есть над чем подумать.

Что до умственного развития, то тут гораздо большую роль играет не радиосигнал, а качество сайтов, которые ребёнок посещает. От «Кода» отставания не будет. За других не ручаемся.

Беспроводная сеть использует радиоволны точно так же как радиоприемники, мобильные телефоны, телевизоры. На самом деле беспроводная связь Wi-Fi более похожа на двустороннюю радиосвязь. Вот что происходит:

1. Адаптер Wi-Fi преобразует поток данных в электрический радиосигнал и передает его через антенну.

2. Wi-Fi маршрутизатор получает радиосигнал и дешифрует его. Маршрутизатор Wi-fi отправляет данные с помощью физических, проводных соединений.

Фактически нам без проводов не обойтись. Но провода находятся только у провайдера. У нас же все красиво, и без лишних кабелей.

Это работает и в обратном направлении, маршрутизатор получает информацию из интернета и переводит его в радиосигнал, отправляя его потом беспроводным адаптером компьютера.

Wi-Fi радио может передаваться по любому из трех диапазонов рабочих частот. Или, они могут менять частоты на ходу. Смена частот помогает снизить помехи.

Для того чтобы работал Wi-Fi необходимо соответствующее оборудование для беспроводной связи, которое сейчас выпускают достаточное количество производителей. Все оборудование можно поделить на:

1. точку доступа

2. беспроводной роутер

И у первого и у второго устройства, по сути, одинаковая начинка - приемопередающий модуль. Отличаются они между собой лишь режимами работы. Основное отличие одинаковых беспроводных устройств, выпускаемых разными производителями, это их программное обеспечение.

Беспроводное соединение устанавливается между двумя точками доступа (в качестве второй точки может быть роутер). Каждая беспроводная точка может соединиться только с одной точкой. Беспроводной роутер - это умная точка доступа. Это устройство позволяет обмениваться данными трем и более беспроводным точкам.

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка, когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов на скорости 0.1 Мбит/с каждые 100 мс. Так что 0.1 Мбит/с -- наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID, приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения.

По сути, точка доступа является приёмо-передатчиком радиосигнала и, как у любого такого устройства, у нее есть определенный радиус действия. Обычный WiFi-роутер позволяет передавать сигнал на расстояние до 90 м в зоне прямой видимости. В помещении же все зависит от многих факторов: планировка, толщина и материал стен, наличие других излучателей радиосигнала и др. Но, как правило, мощности передатчика простой точки доступа вполне достаточно для «покрытия» небольшого офиса из трех-четырех кабинетов или квартиры, площадью 150 м2. При необходимости зону покрытия можно увеличить, установив в местах слабого приема специальные точки доступа, работающие в режиме «повторителя». Они принимают сигнал от основной точки, усиливают, и передают дальше.


Итак, пусть изначально у нас есть некий стандартный роутер/точка доступа с официально разрешенными для нашей страны параметрами по мощности сигнала, который работает «в полную силу», то есть на мощности передатчика 100%. Напоминаю, это 23 дБм / 200 мВт в диапазоне 5ГГц или 20 дБм / 100 мВт в диапазоне 2,4 ГГц.

Примечание: единица измерения мощности беспроводного сигнала измеряется в дБм или мВт.

Излучаемый роутером/ТД сигнал распространяется вокруг, и попадает на приемные устройства, существенно ослабнув «по пути». Какой примерно сигнал мы имеем на стороне клиента (смартфона, планшета, ноутбука и т.д.)? Ну, к примеру, -50 дБм / 0.00001 мВт или -67 дБм / 0.0000002 мВт.

В то же время беспроводной клиент, который обычно представляет собой мобильное устройство, имеет задачу не только подключиться к сети, но и подольше проработать от батареи. Поэтому клиент не «выбрасывает» напрасно энергию в эфир. Мощность передатчика клиентов обычно находится на уровне 11-17 дБм (12.5-50 мВт). То есть, эта мощность в от 8 до 2 раз меньше, чем мощность сигнала роутера, если говорить об устройствах в 2,4 ГГц диапазоне.

реклама

При этом у беспроводных роутеров/ТД всегда есть CCA Threshold – порог слышимости сигнала, и если уровень сигнала не превышает этот порог, роутер/ТД считает его шумом. Предположим, этот порог - 82 дБм. Таким образом, наш условный роутер с 5 дБи антеннами будет работать с устройствами, уровень сигнала от которых в точке размещения роутера не менее -87 дБм (-87 дБм сигнал + 5 дБи коэффициент усиления антенны роутера = -82 дБм).

Примечание: разумеется, это чисто условный пример, в котором все параметры условно-типичные и даны для понимания ситуации; ваш роутер может иметь антенны с коэффициентом усиления отличающимся от 5 дБи, и иной порог, например - для определенного оборудования Ubiquiti в целом стабильная связь гарантируется при уровне сигнала до -70дБм; порог для сетей 5ГГц ниже чем для 2,4 ГГц даже на одном и том же оборудовании и т.п., но это нюансы, в которые мы углубляться не будем.

В целом для роутера и клиента можно руководствоваться простым правилом: при прочих равных условиях, сигнал теряет 6 дБ мощности (т.е. в 4 раза) при увеличении расстояния от передатчик в 2 раза.

Однако, как было сказано выше, мощность сигнала роутера/ТД обычно в 2-8 раз выше, чем на клиентах. И с отдалением от роутера/ТД неизбежно возникнет ситуация, когда клиент будет слышать сигнал роутера хорошо, а вот роутер будет слышать более слабый сигнал клиента на «грани» возможностей или не слышать вообще (так как уровень сигнала клиента будет опускаться за порог слышимости CCA Threshold). И возникнет странная ситуация, когда сигнал Wi-Fi от роутера на клиентском устройстве вроде бы ловится, но связи нет или она постоянно «отваливается».

реклама

Причина в асимметрии «силы» связи: к примеру, когда клиент мощностью 14 дБм слышит роутер/ТД на -84 дБм (-84 дБм + 2 дБи коэффициент усиления антенны клиента = условный порог слышимости -82 дБм), до роутера/ТД доходит сигнал от клиента лишь на уровне -90 дБм, что находится ниже порога слышимости. При указанных условиях беспроводная связь гарантированно оборвется.

То есть, в каналах беспроводной связи уже при типичных стандартных параметрах работы роутеров/ТД возникает существенная проблема со связью, вызванная асимметрией мощностей Wi-Fi излучателей. И если дополнительно поднять мощность сигнала на одной стороне (роутере/ТД), то проблема только усугубится. Перемещаясь с мобильными клиентами, вы все более часто будете сталкиваться с ситуацией, когда Wi-Fi роутер «теряет» устройства, и именно потому, что у него существенно более сильный сигнал. Клиент «услышит» роутер/ТД, а роутер клиента – нет. Вот почему серьезные производители оборудования не рекомендуют использовать Wi-Fi роутеры и точки доступа на максимальной мощности. Привожу в доказательство фрагмент презентации Cisco (с полной презентацией можно ознакомится здесь).


Даже наоборот, для устранения асимметрии и получения стабильной связи рекомендуется понизить мощность Wi-Fi передатчика в роутере/ТД.

Но если не мощность сигнала, то что же тогда определяет скорость и надежность Wi-Fi соединения?

Скорость подключения, которая ни о чем не говорит.

Скорость подключения по Wi-Fi определяют три параметра: тип модуляции, количество потоков (зависит от количества антенн) и ширина радиоканала.

Но «теоретическая» скорость подключения на основе вышеуказанных параметров имеет мало общего с реальной скоростью работы беспроводной сети. Что же оказывает влияние на эту скорость?

Дело в том, что модуляция в сети непостоянна. Самые прогрессивные модуляции на сегодня - 256 QAM и 1024 QAM (модуляция определяет, сколько бит передается в одном радиосимволе). Но! Эти плотные модуляции очень чувствительны к шуму. И достигаются они только при высоком соотношении сигнал/шум (SNR), когда клиент находится близко к Wi-Fi роутеру/ТД. С удалением от роутера/ТД растет шум, SNR падает, модуляция упрощается для надежности соединения и, как следствие – падает скорость связи. Плюс свою лепту в проблемы сети добавляет интерференция.

Интерференция и шум

Причиной коллизий из-за интерференции в Wi-Fi сетях являются беспроводные устройства, работающие на том же или близком канале. Это вполне могут быть соседские Wi-Fi устройства, а не ваши, и повлиять на их работу вы не сможете.

Примечание: в частности, поэтому рекомендуется использовать непересекающиеся каналы для соседних Wi-Fi роутеров; непересекающиеся каналы помогают избегать интерференции (хотя полностью проблему, конечно, не решают – проблемы растут по мере удаления от передатчиков).

Итак, интерференция – это помеха, вызываемая радиоволнами соседних Wi-Fi устройств.

Источником шума в беспроводных сетях являются не Wi-Fi устройства, использующие для работы тот же радиочастотный диапазон, что и Wi-Fi оборудование. Это различные Bluetooth устройства, 2,4ГГц и 5 ГГц ресиверы, радиотелефоны, микроволновые печи и другое оборудование.

Примечание: впрочем, поврежденные пакеты Wi-Fi и сигналы от устройств за пределами порога CCA Threshold тоже считаются шумами. Сигналы от Wi-Fi устройств, работающих отдаленно от роутера на том же канале, не считаются интерференцией, поскольку сигналы таких устройств не могут быть демодулированы.

Как уменьшить интерференцию и шум в Wi-Fi сети? Для домашнего пользователя я вижу только два варианта действий: перейти на другой канал и провести деагрегацию каналов. Так как объединение каналов уже само по себе ухудшает SNR: каждый дополнительный 20 MГЦ канал отнимает примерно 3dB у показателя SNR.

Примечание: уменьшение ширины канала в 10 раз увеличивает соотношение сигнал-шум в те же 10 раз. Вот почему в стандарте 802.11ax реализована идея разделения канала на дополнительные поднесущие. Сужение канала повышает соотношение сигнал/шум, что и дало возможность использовать прогрессивную кодировку 1024 QAM.

Но решающее влияние на быстродействие вашей сети будет оказывать не соотношение сигнал/шум, не интерференция как таковая, не мощность беспроводного сигнала, и уж тем более не количество беспроводных сетей вокруг, как ошибочно думают многие. Быстродействие вашей беспроводной сети будет в значительной степени определяться утилизацией канала. Ну, если вы живете не в тайге среди медведей, конечно. Там Wi-Fi каналы утлилизировать будет некому, кроме вас.

Проблемы утилизации

Что такое утилизация канала? И почему она сильно влияет на скорость работы Wi-Fi сети? Утилизация - это доля эфирного времени, которую занимают все работающие на данном канале устройства, и чьи сигналы могут быть демодулированы нашим Wi-Fi роутером/ТД, то есть энергия которых выше за CCA Threshold. По сути, пакеты нашей сети «втискиваются» в доступные узкие эфирные рамки между пакетами других сетей, работающих в этом же радиодиапазоне. Увы, но с максимальной производительностью наша беспроводная сеть работает лишь тогда, когда соседские сети на используемом канале не слишком активны или простаивают (а лучше всего – если они на нем отсутствуют). Вот почему настоятельно рекомендуется уходить на самые «незанятые» Wi-Fi радиоканалы. Там банально меньше «утилизаторов» сети.

Примечание: утилизация важна потому, что в Wi-Fi сетях доступ эфирному диапазону реализован по протоколу CSMA/CA (множественный доступ с контролем несущей и обнаружением коллизий), согласно которому беспроводные устройства периодически «слушают» свою частоту на канале, и если она занята, передача данных откладывается, а затем через некоторое время устройство снова делает попытку прослушивания частоты.

Отметим, что утилизация канала никак не влияет на отображаемую в системе скорость беспроводного подключения, но в то же время имеет огромное влияние на реальную практическую производительность беспроводной сети.

Живой пример: стоит одному из беспроводных пользователей поставить на закачку какой-нибудь крупный файл (не говоря уже о торрентах), не выставив разумных ограничений на темп загрузки, как скорость работы всех остальных пользователей на используемом таким юзером Wi-Fi канале существенно упадет, именно из-за утилизации канала. Причем неважно, подключены пользователи к этой же сети, или же к ближайшим сетям использующим тот же Wi-Fi канал. Более того, эффект негативно скажется и на соседних Wi-Fi каналах тоже.

Какой уровень утилизации канала может быть приемлем? Компания Cisco полагает что при утилизации канала более 80%, «ловить» в сети уже нечего. Нет, сеть, конечно, будет работать и при такой утилизации. Но о работе в чем-то близком к реалтайму речь уже не идет.


Низкая утилизация канала - отлично


Средняя утилизация канала - приемлемо

Примечание: не факт, что на канале, на котором меньше всего Wi-Fi сетей, самая низкая утилизация канала - все зависит от сценариев эксплуатации сетей. Установить канал(ы) с самой низкой утилизацией можно только эмпирическим путем.

Одним из эффективных средств уменьшения канальной утилизации (речь идет о средствах, доступных для домашних пользователей), являются: переход на другой канал, уменьшение количества подключенных клиентов в сети, особенно медленных (возможно стоит перевести их в отдельную сеть), уменьшения количества неподключенных Wi-Fi клиентов в зоне действия сети, а также - уменьшение радиуса действия беспроводного роутера, то есть уменьшение мощности передатчика (это отсечет самых дальних и медленных клиентов, которые долго занимают канал и «тормозят» сеть, а также дальние неподключенные устройства, которые регулярно отправляющие менеджмент-фреймы, в том числе не ваши устройства).

Примечание: для устранения конфликтов с соседними сетями Wi-Fi сейчас введен идентификатор BSS Color (Base Service Station), который помечает каждый пакет, что позволяет роутерам и клиентам определить, какие пакеты передаются от соседних сетей, и просто игнорировать их. Это снижает интерференцию от соседних беспроводных сетей и ускоряет передачу данных, но эта возможность доступна только в новейшем стандарте 802.11ах.

Итог

Как видим, использование роутера с большой мощностью Wi-Fi сигнала вовсе не означает, что ваша сеть будет работать лучше, станет надежнее или «дальнобойнее». Скорее наоборот. Чем более мощный Wi-Fi роутер/ТД и чем больше радиус его покрытия – тем больше интерференции и шумов такое устройство наловит, тем больше будет утилизация беспроводных каналов и меньше – производительность сети. Да еще и соседям такой гаджет будет создавать лишние помехи. Как-то так.

Обзор технологии Wi-Fi

Wi-Fi остается одной из наиболее перспективных технологий беспроводной связи. Она стремительно развивается и принимает в себя новые беспроводные решения, позволяющие увеличить скорость передачи данных. Даже с развитием LTE-сетей, Wi-Fi не остается в стороне, а скорее получает дополнительную ветку развития, разгружая трафик в наиболее востребованных участках сети.

Wi-Fi для применения внутри помещений в рамках установленной законодательством мощности излучения не требует получения разрешения на использование частот. Кроме того, организация Wi-Fi-сети в условиях дома или небольшого офиса довольно проста, благодаря чему, зачастую, можно обойтись своими силами. Тем не менее, при проектировании сети с высокими требованиями к качеству связи, плотности покрытия и пропускной способности, как правило, прибегают к помощи специалистов. Развертывание Wi-Fi-сети занимает на порядок меньше времени по сравнению с прокладкой СКС до рабочих мест. Именно за простоту настройки, развертывания, относительную дешевизну и удобство, Wi-Fi по праву считают одной из перспективных и активно развивающихся технологий.

Требования к Wi-Fi-оборудованию описаны в наборе стандартов IEEE 802.11. С выпуском каждого нового стандарта, к 802.11 добавлялась буква, например, 802.11a/b/n и т.д. На сегодняшний день насчитывается несколько десятков разновидностей стандартов Wi-Fi. Не все стандарты были направлены на увеличение скорости передачи данных, некоторые из них затрагивают вопросы безопасности (например, 802.11i), другие включали описание работы роуминга (802.11r) и т.д.


При этом следует отметить, что не все перечисленные стандарты Wi-Fi служат для организации беспроводных локальных сетей как привычные нам роутеры, работающие в диапазонах 2.4 и 5 ГГц (стандарты 802.11 a/b/g/n/ac). Такие стандарты как 802.11ad и 802.11ay изначально планировалось выпустить для передачи данных на небольшие расстояния – от 1 до 10 метров – и, в перспективе, использовать их для организации высокоскоростных интерфейсов передачи данных, например для подключения мониторов к ПК и передачи изображения в формате 8K. Однако, в результате развития 5G-сетей и переходом в диапазон до 100 ГГц, устройства с поддержкой 802.11ad стали применяться для организации радиодоступа вне помещений (но для таких частот должны быть обеспечены условия прямой видимости).

Таким образом, у Wi-Fi большое будущее, которое позволит использовать данную технологию в совершенно разных приложениях. Несомненно, данная технология найдет свое место как в 5G-сетях, IoT-решениях, так и в VR-приложениях:

Обзор технологии Wi-Fi

Применимость различных стандартов Wi-Fi

Диапазон 2.4 ГГц

Большинство обычных клиентских маршрутизаторов и бытовых Wi-Fi-устройств работает в двух частотных диапазонах: 2,4 ГГц (802.11 b/g/n) и 5 ГГц (802.11 a/n/ac).

В диапазоне 2,4 ГГц стандартами определено 14 каналов. Некоторые из них могут быть недоступны в ряде стран (например, 14 канал разрешен для использования только в Японии). Каналы с номерами 1, 6 и 11 считаются полностью не пересекающимися по частотам и называются, как ни странно, "непересекающимися". Но на деле всегда остается "неучтенка", и если точки доступа расположены достаточно близко друг к другу, то и непересекающиеся каналы становятся пересекающимися:

Обзор технологии Wi-Fi

Каждый канал занимает ширину в 20 МГц. В некоторых случаях, стандартами разрешено использовать ширину канала равную 40 МГц (см. раздел Агрегация каналов). Номера каналов и их центральные частоты приведены на рисунке.

Обзор технологии Wi-Fi

Каналы Wi-Fi в диапазоне 2.4 ГГц

Использование непересекающихся каналов удобно в том случае, когда требуется организовать равномерное радиопокрытие таким образом, чтобы рядом расположенное оборудование не мешало друг другу, увеличивая тем самым стабильность и качество связи:

Обзор технологии Wi-Fi

Одним из недостатков диапазона 2,4 ГГц является его высокая загруженность и малое количество каналов. Помехи для Wi-Fi-сети могут создавать не только другие Wi-Fi-устройства и точки доступа, но и Bluetooth-устройства, работающие в этом же частотном диапазоне. Даже обычная бытовая СВЧ-печь способна очень сильно влиять на качество соединения в диапазоне 2,4 ГГц. Для минимизации взаимных влияний мощность Wi-Fi-передатчиков строго ограничена и регламентирована. Использование мощного передатчика требует получения разрешения в радиочастотном центре.

Более перспективным, с точки зрения меньшей загруженности и наличия большего числа каналов, является частотный диапазон 5 ГГц.

Диапазон 5 ГГц

В частотном диапазоне 5 ГГц доступно 23 неперекрывающихся канала по 20 МГц. Можно даже отметить, что 5-гигагерцовый диапазон состоит только из неперекрывающихся каналов, так как на такой частоте перекрытие создает существенные коллизии. Здесь уже можно использовать не только ширину 20/40 МГц, но и каналы шириной в 80 МГц (основной + вспомогательный). Ниже изображено расположение каналов в диапазоне 5 ГГц:

Обзор технологии Wi-Fi

  • Первый блок (Lower, нижний) каналов UNII-1 лежит в диапазоне частот от 5180 до 5240. При этом доступные непересекающиеся каналы по 20 МГц: 36, 40, 44, 48;
  • Второй блок (Middle, средний) UNII-2 лежит в диапазоне частот от 5260 до 5320. При этом доступные непересекающиеся каналы по 20 МГц: 52 56 60 64;
  • Третий блок (Extended, расширенный) UNII-2 лежит в диапазоне частот от 5500 до 5700. При этом доступные непересекающиеся каналы по 20 МГц: 100 104 108 112 116 120 124 128 132 136 140;
  • Четвертый блок UNII-3 - частота от 5745 до 5805, доступные непересекающиеся каналы по 20 МГц: 149 153 157 161;
  • Отдельно существуют 3 группы каналов: Japan (каналы: 8, 12, 16; диапазон 5040-5080) US Public Safety (каналы: 184, 188, 192, 196; диапазон 4920-4980) ISM (канал 165, частота 5825);
  • Стандартом 802.11ac предусмотрено использование групп UNII-1, UNII-2 (обе) и UNII-3, т.е. суммарно 23 канала. Благодаря чему, при использовании ширины канала в 80 МГц, доступно 5 непересекающихся каналов. Этой же спецификацией предусмотрена возможность объединения 2-х каналов по 80 МГц, что в итоге дает 160 МГц.

Carrier Aggregation - агрегация каналов

Под агрегацией следует понимать логическое объединение нескольких параллельных каналов передачи в один. Стандартами допускается использование полосы пропускания 40 МГц в диапазоне 2,4 ГГц. В диапазоне 5 ГГц ширина каналов может быть увеличена до 40, 80, 160 МГц с занятием частот соседних каналов для увеличения пропускной способности сети:

Обзор технологии Wi-Fi

Это и называется агрегированием. В случае использования широкой полосы пропускания, стабильность соединения может снижаться в силу взаимных влияний различных сетей друг на друга. Однако, несомненно, увеличение ширины канала позволяет многократно увеличить скорость передачи данных.

В этом разделе приводится описание технологий, которые нашли применение в беспроводных сетях стандарта 802.11 и позволили многократно увеличить скорости передачи данных – MIMO и Beamforming.

MIMO - Multiple Input Multiple Output

Технология MIMO оказала большое влияние на развитие Wi-Fi. Буквально несколько лет назад никто не думал о том, что будут существовать беспроводные устройства с пропускной способностью в сотни мегабит в секунду. Возникновение новых скоростных стандартов связи, в том числе 802.11n произошло во многом благодаря MIMO.

Наиболее простое определение, которое можно дать технологии MIMO – это многопотоковая передача данных. Аббревиатура переводится с английского как "несколько входов, несколько выходов". В отличие от своего "родителя" (Single Input / Single Output), в устройствах с поддержкой MIMO сигнал передается на одном радиоканале с помощью нескольких приемников и передатчиков.

Одной из основных характеристик технологии MIMO является количество антенн, работающих на прием и передачу. Обозначается NxM, где N - количество передающих антенн, а M - приемных. Например, MIMO типа 3х2 означает, что радиосистема имеет 3 передающие антенны и 2 принимающие. Кроме того, в MIMO применяется пространственное мультиплексирование. Иначе говоря, технология одновременной передачи данных нескольких пакетов по одному каналу. Благодаря такому "уплотнению" канала, его пропускную способность можно увеличить в два и более раз.

Как только технология беспроводной передачи данных Wi-Fi начала пользоваться большим спросом, быстро стали возрастать и требования к скорости. Впервые технология MIMO появилась в стандарте 802.11n, который дал возможность увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до 600 Мбит/сек. Стандарт 802.11n дает возможность применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц. Таким образом можно получить в несколько раз увеличенную пропускную способность каналов, которые используются в данный момент. С помощью объединения MIMO с более широкой полосой пропускания канала, получается достаточно мощный способ повышения физической скорости передачи.

Типы MIMO

Для различного количества пользователей, между которыми в одно и тоже время идет передача данных, существует два типа технологий:

SU-MIMO – система для одного пользователя (Single User - SU). Используется, когда в определенный промежуток времени потоки данных идут только к одному пользователю. Технология предоставляет многоканальные входные и выходные потоки одному устройству. Пока Wi-Fi-устройство адресата получает или принимает данные, другие пользователи находятся в ожидании.

MU-MIMO – система для нескольких пользователей (Multi User - MU). Позволяет нескольким пользователям принимать одновременно потоки данных. Она опирается на технологии SU-MIMO, но дает одновременную связь точки доступа с несколькими устройствами. MU-MIMO создает до 4 одновременных подключений, передавая по 4 потока данных одновременно. В результате пользователи не делят между собой соединение и улучшается производительность сети.

Обзор технологии Wi-Fi

Разница между технологиями SU и MU-MIMO

Особенности технологии

До появления стандарта 802.11ax, технология MU-MIMO работала только в диапазоне 5 ГГц. С появлением 802.11ax MU-MIMO стала доступной и на 2.4 ГГц. В продаже сетевого оборудования появляется все больше двухдиапазонных маршрутизаторов с поддержкой данной технологии.

MU-MIMO использует технологию Beamforming. Благодаря ей, сигналы распространяются не хаотично, а в направлении беспроводного устройства. Эта направленность позволяет увеличить дальность сигнала и повысить скорость передачи данных.

К сожалению, невозможно обслуживать бесконечное количество пользователей и потоков данных. Например, роутер с поддержкой трех потоков может одновременно работать только с тремя Wi-Fi-устройствами без задержек.

Чтобы пользоваться преимуществами метода, принимающее устройство должно иметь поддержку MU-MIMO. В данном случае, достаточно одной антенны и пользовательское устройство примет поток данных от роутера.

Компании, выпускающие смартфоны, роутеры, точки доступа и другие сетевые устройства уже заложили в них поддержку технологии. Как гарантируют производители, во многих современных устройствах, они учли также аппаратные требования для поддержки MU-MIMO, и теперь достаточно обновить ПО на своем гаджете, и пользователь получит поддержку данной технологии.

Сигнал, который передается с помощью архитектуры MU-MIMO, сложно перехватить, что повышает безопасность беспроводной сети.

На первых этапах развития технологии существовала трудность совмещения устройств, работающих с поддержкой MIMO и без нее. Однако на данный момент это уже не так актуально – практически каждый современный производитель беспроводного оборудования использует ее в своих устройствах. Также, одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков, являлась цена устройства.

Beamforming - автоматическое формирование луча

В последних моделях Wi-Fi-маршрутизаторов все чаще можно увидеть такую "опцию" как Beamforming. Beamforming, согласно техническим спецификациям современных Wi-Fi-устройств, это технология, позволяющая направлять излучаемый сигнал не во все стороны, как это происходит обычно, а "концентрированно" в сторону абонента. Это увеличивает отношение сигнал/шум, и как следствие - скорость передачи данных:

Обзор технологии Wi-Fi

Особенно это актуально в местах, где много различных перекрытий сигналов и множество других источников радиопомех, работающих в нелицензируемом диапазоне частот 2.4 и 5 ГГц.

Следует отметить, что главной сложностью при внедрении beamforming в устройства является сложность настройки антенн в сочетании с грамотным программным обеспечением. В недорогих моделях роутеров зачастую наличие beamforming является лишь маркетинговым ходом. Сильно повысить стабильность приема в отдаленных участках помещения не получится. Beamforming стал частью стандарта, начиная с 802.11ac, во втором поколении этих устройств (wave 2).

MCS в Wi-Fi сетях

  • Тип модуляции. Модуляция - это метод передачи данных. Чем сложнее модуляция, тем выше скорость передачи данных. Более сложные модуляции требуют хороших условий передачи, низкого уровня помех и отсутствия препятствий на пути прохождения сигнала.
  • Скорость кодирования информации. Этот параметр указывает на то, какая часть потока данных фактически используется для передачи "полезной" информации. Это значение выражается в виде дроби, например, 5/6 или 83,3% используемого потока данных.
  • Количество пространственных потоков. Используя технологию MIMO, в настоящее время возможно запускать до 8 пространственных потоков. Фактически это позволяет использовать одну и ту же область частотного пространства для передачи и приема нескольких потоков данных.
  • Ширина канала передачи. Это значение определяет, какая ширина канала будет использована для передачи. Ширина канала может быть максимум 40 МГц для диапазона 2.4 ГГц и 160 МГц для диапазона 5 ГГц. В диапазоне 60 ГГц ширина канала может составлять до 2 ГГц (стандарт 802.11ad/ay).
  • Длительность защитного интервала. Защитный интервал фактически представляет собой очень короткую паузу между передачей пакетов, чтобы можно было игнорировать любую ложную информацию. Более длительные интервалы защиты обеспечивают более надежную беспроводную связь.


Чем выше индекс MCS, тем "сложнее" вышеперечисленные параметры передачи. Значение индексов MCS для различных стандартов Wi-Fi приводится в таблице ниже. В расширенной виде с таблицей MCS можно ознакомиться по ссылке.

Читайте также: