В настоящее время под компьютерной моделью чаще всего понимают какие модели

Обновлено: 05.07.2024

– выполнять роль «обучения» новых моделей (самообучающиеся модели).

Разновидностью компьютерного моделирования является вычислительный эксперимент. Компьютерное моделирование, вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем.

Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений) получим физико-математическую модель системы или математическую модель физической системы. В частности, физиологическая система – система кровообращения человека, подчиняется некоторым законам термодинамики и описав эту систему на физическом (термодинамическом) языке получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то получим математическую модель системы кровообращения. Эту модель можно назвать физиолого-физико-математической моделью или физико-математической моделью.

Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные. Познавательная модель – форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью. Прагматическая модель – средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.

Инструментальная модель – является средством построения, исследования и/или использования прагматических и/или познавательных моделей.

Познавательные отражают существующие, а прагматические – хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню, «глубине» моделирования модели бывают эмпирические – на основе эмпирических фактов, зависимостей, теоретические – на основе математических описаний и смешанные, полуэмпирические – использующие эмпирические зависимости и математические описания.

Основными требованиями к модели являются:

– обозримость основных свойств и отношений;

– доступность ее для исследования или воспроизведения;

– простота исследования, воспроизведения;

– сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.

Проблема моделирования состоит из трех задач:

– построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);

– исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);

– использование модели (конструктивная и конкретизируемая задача).

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Что называется моделью? Для чего необходима модель? Какие бывают компьютерные модели? Что такое вычислительный эксперимент?

Моделью называется объект , который заменяет реальный предмет или явление для изучения его свойств . Модель называют инструментом познания объекта .

Известно , что , правильно построенная модель информативнее и доступнее при изучении свойств , чем реальный объект . Существует несколько требований к модели , после выполнения которых модель можно считать информативной . К ним относятся :

наглядность и видимость основных свойств и построения ;
доступность ее для исследования или воспроизведения ;
простота исследования , воспроизведения ;
сохранение информации , содержащейся в оригинале и способность получение новой информации .
Для того , чтобы результаты моделирования можно было использовать при работе с реальным объектом , модель должна быть адекватной , то есть свойства модели должны совпадать со свойствами реального объекта . Смысл замены реального объекта для исследования его моделью в том , что исследовать модель дешевле и проще , к тому же в некоторых случаях безопаснее .

Модель отражает наиболее значимые свойства объекта , оставляя без внимания второстепенными .

К основному предназначению моделирования можно отнести изучение поведения сложных систем физических процессов и явлений . Некоторые объекты и явления не могут быть изучены естественным образом ввиду различных факторов . В других случаях , исследования компьютерных моделей могут предшествовать реальным экспериментам для оценки необходимых ресурсов .

Естественно , модель любого реального явления или объекта недостаточно точна , нежели само явление или объект , но хорошо построенная модель способна отобразить все свойства и нюансы поведения системы в целом . Благодаря отображению всех характеристик объекта разом .

Модель способна научить надлежащим образом управлять реальным объектом путем проб и ошибок . Использовать для этой цели реальный объект бывает невозможно либо рискованно и неоправданно .

Итак , модель необходима для :

Модели можно разделить на вербальные , математические и компьютерные . Вербальные модели представляют собой утверждения , записанные на естественном или формализованном языке , которые описывают изучаемый объект . Математические модели представляют собой совокупность математических операторов и действий с ними , часто это есть система уравнений . Компьютерная модель это программа или их совокупность , которая благодаря математическим преобразованиям имитирует поведение изучаемой системы .

Одним из эффективных способов изучения явлений является научный эксперимент, то есть воспроизведение изучаемого явления в контролируемых условиях, которыми можно управлять. Исследуемый объект часто заменяют компьютерной моделью ввиду большей удобности и экономичности. Благодаря распространению мощных ЭВМ и информационных технологий в настоящее время компьютерное моделирование можно назвать самым результативным методом исследования физических, технических и других систем. Компьютерные модели позволяют выявить основные условия, которые определяют свойства изучаемых явлений и объектов, изучить обратную связь системы на изменяющиеся условия.

Компьютерная модель – это отдельная программа либо программный комплекс, которые позволяют при помощи вычислений и графического отображения результатов воспроизводить реальные объекты и процессы при воздействии на них различных факторов. Такие модели еще называют имитационными.

Компьютерное моделирование – метод решения задачи анализа или синтеза сложной системы на основе изучения ее компьютерной модели. Смысл такого моделирования состоит в получении количественных и качественных результатов по созданной модели, что позволяет изучить неизвестные ранее свойства системы. Компьютерная модель должна отображать максимальное количество взаимосвязей и характеристик реального объекта, существующие ограничения. Модель следует строить универсальной, чтобы использовать ее для описания подобных объектов; простой, чтобы обойтись разумными тратами на исследование.

Компьютерная модель также является отличным наглядным и обучающим пособием для учащихся. При использовании компьютерной модели в качестве обучающего механизма существуют возможности:

  • рассмотреть сложные явления и процессы на доступном уровне;
  • сделать акцент на главных свойствах системы благодаря гибкой форме ее представления и наличию эффектов мультимедиа;
  • наблюдать за процессом в динамике, учитывая все его изменения;
  • представлять работу системы в наглядном виде: графики, схемы, диаграммы;
  • предпринимать действия невозможные в реальности из-за пространственно-временных рамок или опасения за безопасность модели и окружающей среды.

Виды компьютерных моделей.

Для начала определимся, каким может быть компьютерное моделирование.

  1. Физическое моделирование – моделирование, при котором создается целая установка для проведения экспериментов либо отдельный тренажер, например, для тренировки управления самолетом. Такая модель принимает внешние сигналы, осуществляет необходимые математические операции и выдает соответствующие сигналы для управления моделью.
  2. Численное моделирование – решение системы уравнений математическими методами, проведение вычислительного эксперимента на основе входных параметров системы и внешних воздействий на нее. Примером может служить моделирование любых природных и искусственных процессов.
  3. Суть имитационного моделирования в создании программы, которая будет имитировать поведение сложной системы. Такая имитация основана на формальном описании логики существования системы, при котором учитываются взаимодействия всех ее составляющих. Примерами являются исследования биологических, физических и других систем, а также создание игр, обучающих программ.
  4. Информационное моделирование – создание информационной модели, то есть объединенных вместе данных, классифицированных по определенным признакам, определяющих суть исследуемого объекта. Информационной моделью являются таблицы, графики, анимации, диаграммы, карты.
  5. Моделирование знаний, к которому относится создание систем искусственного интеллекта. За основу таких моделей берутся знания какой-либо области, состоящие из данных и правил. Примером служат экспертные системы, логические игры, программы для роботов, создания эффектов виртуальной реальности и прочее.

Исходя из всего вышеперечисленного, компьютерные модели можно разделить на:

  1. дискриптивные модели, описывающие исследуемый объект и факторы, влияющие на изменения в его поведении.
  2. оптимизационные модели помогают определить наиболее подходящий способ взаимодействия со сложной системой, управления ею.
  3. прогностические модели предсказывают состояние объекта в конкретные моменты в будущем.
  4. учебные модели, используемые для наглядного обучения обучающихся, их тестирования.
  5. игровые модели создают несуществующие ситуации, имитирующие реальность, играют в логические игры.

Под компьютерным моделированием изначально подразумевалось только имитационное моделирование, однако, не трудно заметить, что использование компьютера для других целей может значительно помочь для решения поставленных задач. Например, построение современных математических моделей по входным экспериментальным данным невозможно или труднодостижимо без использования компьютера.

Первые задач, решаемые с помощью компьютерного моделирования, были связаны с физикой и представляли собой в основном сложные нелинейные задачи физики с помощью итерационных схем и по сути являлось математическим моделированием. Хорошие результаты в моделировании в области физики распространили использование этого метода исследования и на другие области. Сложность решаемых моделированием задач зависела только от мощности используемых компьютеров, тем самым и ограничивалась несовершенными мощностями

После публикации в 1948 году статьи Дж. Неймана и С. Улама, в которой впервые было описано применение метода Монте-Карло, многие исследователи стали называть компьютерное моделирование методами Монте-Карло. Это не верно, правильней будет выглядеть разделение компьютерного моделирования на несколько направлений[6]:

  • Методы Монте-Карло или методы вычислительной математики. Используются численные методы, объекты заменяются числами, результаты формируются в таблицы или графики;
  • Методы имитационного моделирования;
  • Методы статистической обработки данных на основе метода планирования эксперимента;
  • Комплексы имитационного моделирования, в которых объединяются все вышеупомянутые методы.

Разновидностью компьютерного моделирования является вычислительный эксперимент, который предполагает дальнейшее численное исследование модели после ее создания, позволяющее исследовать объект в различных его модификациях и при различных условиях.

С использованием ЭВМ для выполнения арифметических и логических операций производительность интеллектуального труда человека значительно возросла. Первые задачи, для которых создавались ЭВМ, были связаны с ядерной энергией и освоением пространства космоса. Сейчас же компьютер принимает участие в различных задачах и исследованиях, эта технология теоретических экспериментов получила название вычислительного эксперимента. Основой вычислительного эксперимента является математическое моделирование, теоретической базой – прикладная математика, а технической – мощные электронные вычислительные машины.

Компьютерное моделирование и вычислительный эксперимент становятся новым методом научного познания для исследования сложных моделей систем. Цикл вычислительного эксперимента принято разделять на несколько этапов для лучшего восприятия сути этого метода.

Моделирование является одним из способов познания мира.

Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.

Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.

Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.

Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.

  1. Создание модели.
  2. Изучение модели.
  3. Применение результатов исследования на практике и/или формулирование теоретических выводов.

Видов моделирования огромное количество. Вот некоторые примеры типов моделей:

Математические модели . Это знаковые модели, описывающие определенные числовые соотношения.

Графические модели. Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.

Имитационные модели. Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.

Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.

Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.

Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.

Для компьютерного моделирования важно наличие определенного программного обеспечения.

При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.

Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.

Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.

С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.

Если система сложна, а требуется проследить за каждым ее элементом, то на помощь могут придти компьютерные имитационные модели. На компьютере можно воспроизвести последовательность временных событий, а потом обработать большой объем информации.

Однако следует четко понимать, что компьютер является хорошим инструментом для создания и исследования моделей, но он их не придумывает. Абстрактный анализ окружающего мира с целью воссоздания его в модели выполняет человек.

Одной из важных проблем в области разработки и создания современных сложных технических систем является исследование динамики их функционирования на различных этапах проектирования, испытания и эксплуатации. Сложными системами называются системы, состоящие из большого числа взаимосвязанных и взаимодействующих между собой элементов. При исследовании сложных систем возникают задачи исследования как отдельных видов оборудования и аппаратуры, входящих в систему, так и системы в целом.

К разряду сложных систем относятся крупные технические, технологические, энергетические и производственные комплексы.

При проектировании сложных систем ставится задача разработки систем, удовлетворяющих заданным техническим характеристикам. Поставленная задача может быть решена одним из следующих методов:

  • методом синтеза оптимальной структуры системы с заданными характеристиками;
  • методом анализа различных вариантов структуры системы для обеспечения требуемых технических характеристик.

Оптимальный синтез систем в большинстве случаев практически невозможен в силу сложности поставленной задачи и несовершенства современных методов синтеза сложных систем. Методы анализа сложных систем, включающие в себя элементы синтеза, в настоящее время достаточно развиты и получили широкое распространение.

Любая синтезированная или определенная каким-либо другим образом структура сложной системы для оценки ее показателей должна быть подвергнута испытаниям. Проведение испытаний системы является задачей анализа ее характеристик. Таким образом, конечным этапом проектирования сложной системы, осуществленного как методом синтеза структуры, так и методом анализа вариантов структур, является анализ показателей эффективности проектируемой системы.

Среди известных методов анализа показателей эффективности систем и исследования динамики их функционирования следует отметить:

  • аналитический метод;
  • метод натуральных испытаний;
  • метод полунатурального моделирования;
  • моделирование процесса функционирования системы на ЭВМ.

Строгое аналитическое исследование процесса функционирования сложных систем практически невозможно. Определение аналитической модели сложной системы затрудняется множеством условий, определяемых особенностями работы системы, взаимодействием ее составляющих частей, влиянием внешней среды и т.п.

Натуральные испытания сложных систем связаны с большими затратами времени и средств. Проведение испытаний предполагает наличие готового образца системы или ее физической модели, что исключает или затрудняет использование этого метода на этапе проектирования системы.

Широкое применение для исследования характеристик сложных систем находит метод полунатурального моделирования. При этом используется часть реальных устройств системы. Включенная в такую полунатуральную модель ЭВМ имитирует работы остальных устройств системы, отображенных математическими моделями. Однако в большинстве случаев этот метод также связан со значительными затратами и трудностями, в частности, аппаратной стыковкой натуральных частей с ЭВМ.

Исследование функционирования сложных систем с помощью моделирования их работы на ЭВМ помогает сократить время и средства на разработку.

Затраты рабочего времени и материальных средств на реализацию метода имитационного моделирования оказываются незначительными по сравнению с затратами, связанными с натурным экспериментом. Результаты моделирования по своей ценности для практического решения задач часто близки к результатам натурного эксперимента.

Метод имитационного моделирования основан на использовании алгоритмических (имитационных) моделей, реализуемых на ЭВМ, для исследования процесса функционирования сложных систем. Для реализации метода необходимо разработать специальный моделирующий алгоритм. В соответствии с этим алгоритмом в ЭВМ вырабатывается информация, описывающая элементарные процессы исследуемой системы с учетом взаимосвязей и взаимных влияний. При этом моделирующий алгоритм сроится в соответствии с логической структурой системы с сохранением последовательности протекаемых в ней процессов и отображением основных состояний системы.

Основными этапами метода имитационного моделирования являются:

  • моделирование входных и внешних воздействий;
  • воспроизведение работы моделируемой системы (моделирующий алгоритм);
  • интерпретация и обработка результатов моделирования.

Перечисленные этапы метода многократно повторяются для различных наборов входных и внешних воздействий, образуя внутренний цикл моделирования. Во внешнем цикле организуется просмотр заданных вариантов моделируемой системы. Процедура выбора оптимального варианта управляет просмотром вариантов, внося соответствующие коррективы в имитационную модель и в модели входных и внешних воздействий.

Процедура построения модели системы, контроля точности и корректировки модели по результатам машинного эксперимента задает и затем изменяет блок и внутреннего цикла в зависимости от фактических результатов моделирования. Таким образом, возникает внешний цикл, отражающий деятельность исследователя по формированию, контролю и корректировке модели.

Метод имитационного моделирования позволяет решать задачи исключительной сложности. Исследуемая система может одновременно содержать элементы непрерывного и дискретного действия, быть подверженной влиянию многочисленных случайных факторов сложной природы, описываться весьма громоздкими соотношениями и т.п. Метод не требует создания специальной аппаратуры для каждой новой задачи и позволяет легко изменять значения параметров исследуемых систем и начальных условий. Эффективность метода имитационного моделирования тем более высока, чем на более ранних этапах проектирования системы он начинает использоваться.

Следует, однако, помнить, что метод имитационного моделирования является численным методом. Его можно считать распространением метода Монте-Карло на случай сложных систем. Как любой численный метод, он обладает существенным недостатком – его решение всегда носит частный характер. Решение соответствует фиксированным значениям параметров системы и начальных условий. Для анализа системы приходится многократно моделировать процесс ее функционирования, варьируя исходные данные модели. Таким образом, для реализации имитационных моделей сложной модели необходимо наличие ЭВМ высокой производительности.

Для моделирования системы на ЭВМ необходимо записывать моделирующий алгоритм на одном из входных языков ЭВМ. В качестве входных языков для решения задач моделирования могут быть с успехом использованы универсальные алгоритмические языки высокого уровня, Си, Паскаль и др.

Анализ развития наиболее сложных технических систем позволяет сделать вывод о все более глубоком проникновении ЭВМ в их структуру. Вычислительные машины становятся неотъемлемой, а зачастую и основной частью таких систем. Прежде всего это относится к сложным радиоэлектронным системам. Среди них различные автоматические системы, в том числе системы автоматической коммутации (электронные АТС), системы радиосвязи, радиотелеметрические системы, системы радиолокации и радионавигации, различные системы управления.

При построении таких систем в значительной степени используются принципы и структуры организации вычислительных машин и вычислительных систем (ВС). Характерной особенностью является наличие в системах нескольких процессоров, объединенных различными способами в специализированную ВС. При этом осуществляется переход от «жесткой» логики функционирования технических систем к универсальной «программной» логике. В силу этого все более значительную роль в таких системах, наряду с аппаратными средствами, играет специализированное системное и прикладное программное обеспечение.

На этапах разработки, проектирования, отладки и испытания сложных систем с высоким удельным весом аппаратно-программных средств вычислительной техники ставится задача анализа и синтеза вариантов организации структуры аппаратных средств, а также разработки и отладки специализированного ПО большого объема. Эта задача может быть решена с помощью аппаратно-программного моделирования с использованием универсальных моделирующих комплексов, построенных на базе однородных ВС с программируемой структурой.

Аппаратно-программное моделирование можно считать частным случаем полунатурного моделирования. На первом этапе разрабатывается концептуальная модель заданного класса систем на основе анализа типовых процессов, структур и аппаратных блоков. Концептуальная модель реализуется на аппаратно-программных средствах моделирующего комплекса. При этом моделирующий комплекс может настраиваться на соответствующую структуру системы программным путем за счет возможности программирования структуры используемой микропроцессорной ВС. Часть аппаратных и программных средств микропроцессорной ВС моделирующего комплекса непосредственно отражает аппаратно-программные средства, входящие в исследуемую систему (аппаратное моделирование), другая часть реализует имитационную модель функциональных средств исследуемой системы, внешней обстановки, влияния помех и т.п. (программное моделирование).

Разработка аппаратно-программных моделирующих комплексов является сложной технической задачей. Несмотря на это, применение таких комплексов находит все большее распространение. При достаточной производительности вычислительных средств комплекса процесс исследования системы может вестись в реальном масштабе времени. В составе комплекса могут использоваться как универсальные микроЭВМ общего назначение, так и вычислительные средства, непосредственно входящие в исследуемую систему. Подобные моделирующие комплексы являются универсальными стендами для разработки и отладки аппаратно-программных средств, проектируемых систем заданного класса. Они могут использоваться в качестве тренажеров по обучению обслуживающего персонала.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ [4].

Возможности моделирования, то есть перенос результатов, полученных в ходе построена исследования модели, на оригинал, основаны на том, что модель в определенном смысле отображает (воспроизводит, моделирует, описывает, имитирует) некоторые интересующие исследователя черты объекта. Моделирование как форма отражения действительности широко распространено, и достаточно полная классификация возможных видов моделирования крайне затруднительна, хотя бы в силу многозначности понятия «модель», широко используемого не только в науке и технике, но искусстве, и в повседневной жизни. Тем не менее, применительно к естественным и техническим наукам принято различать следующие виды моделирования:

- концептуальное моделирование, при котором совокупность уже известных фактов или представлений относительно исследуемого объекта или системы истолковывается с помощью некоторых специальных знаков, символов, операций над ними или помощью естественного или искусственного языков;

- физическое (натурное) моделирование, при котором модель и моделируемый объект представляют собой реальные объекты или процессы единой или различной физической природы, причем между процессами в объекте-оригинале и в модели выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений;

- структурно-функциональное моделирование, при котором моделями являются схемы (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специальными правилами их объединения и преобразования;

- математическое (логико-математическое) моделирование, при котором моделирование, включая построение модели, осуществляется средствами математики и логики;

- имитационное (компьютерное) моделирование, при котором логико-математическая модель исследуемого объекта представляет собой алгоритм функционирования объекта, реализованный в виде программного комплекса для компьютера.

Разумеется, перечисленные выше виды моделирования не являются взаимоисключающими и могут применяться при исследовании сложных объектов либо одновременно, либо в некоторой комбинации. Кроме того, в некотором смысле концептуальное и, скажем, структурно-функциональное моделирование неразличимы между собой, так как блок-схемы, конечно же, являются специальными знаками с установленными операциями над ними.

Традиционно под моделированием на ЭВМ понималось лишь имитационное моделирование. Можно, однако, увидеть, что и при других видах моделирования компьютер может быть весьма полезен. Например, при математическом моделировании выполнение одного из основных этапов — построение математических моделей по экспериментальным данным — в настоящее время просто немыслимо без компьютера. В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие получило компьютерное структурно-функциональное моделирование, о котором подробно поговорим ниже. Положено начало привлечения компьютера даже к концептуальному моделированию, где он используется, например, при построении систем искусственного интеллекта.

Таким образом, мы видим, что понятие «компьютерное моделирование» значительно шире традиционного понятия «моделирование на ЭВМ» и нуждается в уточнении, учитывающем сегодняшние реалии.

Начнем с термина «компьютерная модель». В настоящее время под компьютерной моделью чаще всего понимают:

условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекста и т. д. и отображающий структуру элементов объекта и взаимосвязи между ними. Компьютерные модели такого вида мы будем называть структурно-функциональными;

программу или программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных, факторов. Такие модели мы будем далее называть имитационными.

Компьютерное моделирование — метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели. Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему.

Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например процесс инфляции, и вообще – любая сложная система. Цели компьютерного моделирования могут быть различными, »однако наиболее часто моделирование является, как уже отмечалось ранее, центральной процедурой системного анализа, причем под системным анализом мы далее понимаем совокупность методологических средств, используемых для подготовки и принятия решений экономического, организационного, социального или технического характера.

Компьютерная модель сложной системы должна, по возможности, отображать все основные факторы и взаимосвязи, характеризующие реальные ситуации, критерии и ограничения. Модель должна быть достаточно универсальной, чтобы описывать близкие по назначению объекты, и в то же время достаточно простой, чтобы позволить выполнить необходимые исследования с разумными затратами.

Все это говорит о том, что моделирование систем, рассматриваемое в целом, представляет собой скорее искусство, чем сформировавшуюся науку с самостоятельным набором средств отображения явлений и процессов реального мира. Поэтому исключительно сложными, а по нашему мнению, и невозможными, являются попытки классификации задач компьютерного моделирования или создания достаточно универсальных инструментальных средств компьютерного моделирования произвольных объектов. Однако если преднамеренно сузить класс рассматриваемых объектов, ограничившись, например, задачами компьютерного моделирования при системном анализе объектов экономико-организационного управления, то возможно отобрать ряд достаточно универсальных подходов и программных средств.

С развитием вычислительной техники все важнее становится роль компьютерного моделирования в решении прикладных и научных задач. Для проведения компьютерных экспериментов строится подходящая математическая модель и подбираются соответствующие средства разработки программного обеспечения. Выбор языка программирования оказывает огромное влияние на реализацию полученной модели.

Традиционно под моделированием на ЭВМ понималось лишь имитационное моделирование. Можно, однако, увидеть, что и при других видах моделирования компьютер может быть весьма полезен, за исключением разве физического моделирования, где компьютер вообще-то тоже может использоваться, но, скорее, для целей управления процессом моделирования. Например при математическом моделировании выполнение одного из основных этапов - построение математических моделей по экспериментальным данным - в настоящее время просто немыслимо без компьютера. В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие получило компьютерное, структурно-функциональное моделирование, о котором подробно поговорим ниже. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта.

Таким образом, мы видим, что понятие "компьютерное моделирование" значительно шире традиционного понятия "моделирование на ЭВМ" и нуждается в уточнении, учитывающем сегодняшние реалии.
Начнем с термина "компьютерная модель".

В настоящее время под компьютерной моделью чаще всего понимают:

  • условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т. д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;
  • отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило случайных, факторов. Такие модели мы будем далее называть имитационными моделями.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Основные функции компьютера при моделировании:

  • выполнять роль вспомогательного средства для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;
  • выполнять роль средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;
  • выполнять роль средства конструирования компьютерных обучающе - моделирующих сред;
  • выполнять роль средства моделирования для получения новых знаний;
  • выполнять роль "обучения" новых моделей (самообучающиеся модели).

Разновидностью компьютерного моделирования является вычислительный эксперимент.
Компьютерная модель - это модель реального процесса или явления, реализованная компьютерными средствами. Если состояние системы меняется со временем, то модели называют динамическими, в противном случае - статическими.

Процессы в системе могут протекать по-разному в зависимости от условий, в которых находится система. Следить за поведением реальной системы при различных условиях бывает трудно, а иногда и невозможно. В таких случаях, построив модель, можно многократно возвращаться к начальному состоянию и наблюдать за ее поведением. Этот метод исследования систем называется имитационным моделированием.




Примером имитационного моделирование может служить вычисление числа = 3,1415922653. методом Монте-Карло. Этот метод позволяет определять площади и объемы фигур (тел), которые сложно вычислить другими методами. Предположим, что требуется определить площадь круга. Опишем вокруг него квадрат (площадь которого, как известно, равна квадрату его стороны) и будем случайным образом бросать в квадрат точки, проверяя каждый раз, попала ли точка в круг или нет. При большом числе точек отношение площади круга к площади квадрата будет стремиться к отношению числа точек, попавших в круг, к общему числу брошенных точек.

Теоретическая основа этого метода была известна давно, однако до появления компьютеров этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную - очень трудоемкая работа. Название метода происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами, ибо одним из механических приборов для получения случайных величин является рулетка.

Следует заметить, что данный метод вычисления площади круга будет давать корректный результат только если точки будут не просто случайно, но еще и равномерно разбросанными по всему квадрату. Для моделирования равномерно распределенных в интервале от 0 до 1 случайных чисел используется датчик случайных чисел - специальная компьютерная программа. На самом деле эти числа определяются по некоторому алгоритму и уже в силу этого они не являются вполне случайными. Получаемые таком способом числа часто называют псевдослучайными. Вопрос о качестве датчиков случайных чисел весьма непрост, однако для решения не слишком сложных задач обычно достаточно возможностей датчиков, встроенных в большинство систем программирования и электронных таблиц.

Заметим, что располагая датчиком равномерно распределенных случайных чисел, генерирующим числа r из интервала [0; 1), легко получить равномерно распределенные случайные числа на произвольном интервале [a; b) по формуле

Компьютерное моделирование, вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем .

Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например процесс инфляции, и вообще - любая Сложная Система. Цели компьютерного моделирования могут быть различными, однако наиболее часто моделирование является, как уже отмечалось ранее, центральной процедурой системного анализа, причем под системным анализом мы далее понимаем совокупность методологических средств, используемых для подготовки и принятия решений экономического, организационного, социального или технического характера.

Компьютерная модель сложной системы должна по возможности отображать все основные факторы и взаимосвязи, характеризующие реальные ситуации, критерии и ограничения. Модель должна быть достаточно универсальной, чтобы по возможности описывать близкие по назначению объекты, и в то же время достаточно простой, чтобы позволить выполнить необходимые исследования с разумными затратами.

Все это говорит о том, что моделирование, рассматриваемое в целом, представляет собой скорее искусство, чем сформировавшуюся науку с самостоятельным набором средств отображения явлений и процессов реального мира.

Читайте также: