Виды внутренней памяти компьютера

Обновлено: 05.07.2024

Минимальной единицей информации является бит или кратные ему единицы: килобит (1 кб = 1024 бита), мегабит (1Мб = 1024кбит), гигабит (1Гб = 1024Мбит). Но чаще пользуются единицей байт (1 байт = 8 бит), или же кратными ему единицами: килобайт (1 КБ = 1024 байта), мегабайт (1МБ = 1024кБ), гигабайт (1ГБ = 1024МБ). Для измерения больших объемов памяти используются терабайты и петабайты.

Компьютерную память можно классифицировать по типу доступа:

  • последовательный доступ (магнитные ленты)
  • произвольный доступ (оперативная память)
  • прямой доступ (жесткие магнитные диски);
  • ассоциативный;

по типу электропитания:

  • буферная;
  • временная;
  • кэш-память;
  • корректирующая;
  • управляющая;
  • коллективная.

по типу носителя и способу записи информации:

  • акустическая;
  • голографическая;
  • емкостная;
  • криогенная;
  • лазерная;
  • магнитная;
  • магнитооптическая;
  • молекулярная;
  • полупроводниковая;
  • ферритовая;
  • фазоинверсная;
  • электростатическая.

Оперативная память компьютера

Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.

Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.

Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.

Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.

Внешний вид модулей памяти DDR, DDR2, DDR3

Внешний вид модулей памяти DDR, DDR2, DDR3

В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.

Кэш память

Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).

L1 кэш-память

Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.

Кэш-память второго уровня

Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.

Память DDR

Память DDR2

Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.

Память DDR3

Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,

Однако у данного типа памяти есть свои недостатки:

  • наряду с ростом пропускной способности выросла также и латентность памяти;
  • высокая цена модулей памяти.

Память DDR 4

На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.

Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.

Рекомендации по выбору модулей памяти:

При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.

Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.

Память для хранения информации: жесткий диск, твердотельные накопители

За счет вращения создается своеобразный подпор воздуха, благодаря которому считывающие головки не касаются поверхности пластин, хотя и находятся очень близко к ним (всего несколько микрометров). Это гарантирует надежность записи / считывания данных. При остановке пластин, головки перемещаются за пределы их поверхности, поэтому механический контакт между головками и пластинами практически исключен. Такая конструкция обеспечивает долговечность запоминающих устройств этого типа.

Основные характеристики жестких дисков:

Параметры жестких дисков

Классический жесткий диск имеет форм-фактор 3,5 дюйма. В ноутбуках, нетбуках и других портативных устройствах чаще всего используются устройства 2,5 или 1,8 дюйма, хотя встречаются и другие варианты.

Объем буфера специальной внутренней быстрой памяти диска, предназначенная для временного хранения данных с целью сглаживания перебоев при считывании и записи информации на носитель и ее передачи по интерфейсу. В современных запоминающих устройствах буфер может достигать размеров до 64 МБ. Чем этот показатель больше, тем лучше.

В последнее время начался выпуск жестких дисков со встроенной флэш-памятью в качестве кэша, что значительно улучшает скоростные показатели дисков.

Фирмы производители: IBM , Hitachi , Seagate , Samsung , Western Digital .


Запись магнитной информации продольного (а) и перпендикулярного (б) типа

Накопители SSD

Существует всего 2 типа SSD накопителей: SSD диски на основе флэш-памяти (самые популярные и распространенные), и SSD на основе оперативной памяти.

Основополагающим принципом организации работы флеш-памяти является хранение ею 1 бита данных в массиве транзисторов с плавающим затвором (элементарными ячейками), путем изменения и регистрации электрического заряда в изолированной области полупроводниковой структуры. Главной особенностью полевого транзистора, которая позволила ему получить всеобщее признание, как носителя информации, стала способность удерживать электрический разряд на плавающем затворе до 120 месяцев. Сам плавающий затвор изготовлен из поликристаллического кремния и со всех сторон окружен слоем диэлектрика, что исключает возможность контакта его с элементами транзистора. Располагается он между диэлектрической подкладкой и управляющим затвором. Управляющий электрод полевого транзистора и называется затвором.

Запись и стирание информации происходит за счет изменения приложенного заряда между затвором и истоком большим потенциалом, пока напряженность электрического поля в диэлектрике между каналом транзистора и изолированной областью не станет достаточной для возникновения туннельного эффекта. Таким образом электроны переходят через слой диэлектрика на плавающий затвор, обеспечивая его зарядом, а, значит, и наполнение элементарной ячейки битом информации. Также, для усиления эффекта туннелирования электронов при записи, применяется слабое ускорение электронов путем пропускания тока через канал полевого транзистора.

Для удаления информации управляющий затвор обеспечивается отрицательным напряжением высокой мощности с тем, чтобы позволить электронам переходить с плавающего затвора на исток. Подобная организация элементарных ячеек, объединенных в страницы, блоки и массивы и составляет твердотельный накопитель.

Преимущества SSD накопителей:

Недостатки SSD накопителей:

RAID массивы

RAID имеет две цели:

  1. увеличение надежности хранения информации;
  2. увеличение скорости записи / считывания.

Наиболее популярными видами RAID является RAID 0, 1 и 0 + 1.


Схема записи информации в массиве RAID 1 (отражение)

RAID 3 и 4 используют массив дисков с чередованием и выделенным диском четности.


Схема массива RAID 5

RAID 6. Все различия сводятся к тому, что используются две схемы четности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи чрезвычайно низкой.

Комбинация RAID 0 + 1, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объема дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.


Схематическое изображение массива RAID 0 + 1 (а) и RAID1 + 0 (б)

RAID 0 + 1 имеет высокую скорость работы и повышенную надежность, поддерживается даже дешевыми RAID контроллерами и является недорогим решением.

Выводы

Для осуществления основного информационного процесса - сохранения информации - используют материальный носитель. К внешней памяти относят материальные носители не входящие в состав оборудования ПК, например, флеш-накопители, CD и DVD диски. Однако более сложное устройство имеет внутренняя память компьютера.

Во внутреннюю память ПК входят:

Внутренняя память ПК

Постоянная память

Это вид энергонезависимый вид запоминающего устройства. Постоянное ЗУ, предназначено для чтения, ведь функции внесения изменений у него нет.

Этот раздел памяти предназначен для ПО компьютера, которое в процессе работы не подлежит изменению. К нему относится: ПО управления работой основных и дополнительных устройств ПК; включения и выключения; тестирования оборудования.

Основное отличие от ОЗУ, постоянное хранение информации, даже после выключения.

Оперативная память

Внутренняя память ПК произвольным доступом, энергозависимый вид ЗУ. Имеется несколько поколений:

DDR. Самый первый модуль, имеет симметричные каналы, которые не зависят друг от друга. Сейчас она не используется, но возможно ее встретить в старых ПК.

DDR2. Модуль с высокими пропускной способностью и частотой. Современные компьютеры не используют.

DDR3. Третье поколение модуля, до сих в ходу с 2012 года. Тактовая частота и пропускная способность увеличена в сравнении с предыдущим модулем. Максимальный объем увеличен до 16 Гб. Имеет модуль с пониженным напряжением, требуемом для работы.

DDR4. Актуальный и современный модуль, используемый с 2014 года. Объем планки уже увеличен до 128 Гб.

Кэш-память

Хранилище, используемое для сохранения сведений, необходимых в настоящий отрезок времени. Доступ к содержимому в разы быстрее ОЗУ и ПЗУ. Основная задача ЗУ ускорение работы ПК и хранение информации краткосрочно. Каждый главный элемент компьютера обладает кэшем. Основное отличие от других ЗУ, это сверхскорость. Емкость до 40 Мб.

Кэш рекомендуется периодически очищать.

CMOS-RAM

Устройство внутренней памяти компьютера, имеющее минимальное энергопотребление. Хранение данных о конфигурации и оборудовании ПК, входящих в состав компьютера.

Обратите внимание, что этого невеликий по размерам элемент, от которого зависит бесперебойность в работе ПК.

Видеопамять

Выделяется в отдельный вид ЗУ, так как видеокарта, является оборудованием в оборудовании, это один из основных элементов ПК. Позволяет хранить видео элементы.

Имеет сходство с ОЗУ, по объему небольшая в противном случае, загрузка изображения будет очень долговременной.

Подводя итог можно сказать, что не каждый вид запоминающего устройства нужно выбирать из расчета чем больше по объему, тем лучше.

ОП или ОЗУ (оперативно-запоминающее устройство) – это устройство для временного хранения данных.

ОП представляет собой набор ячеек, доступ к которым может осуществляться в произвольном порядке, поэтому память получила название RAM (Random Access Memory – память произвольного доступа).

ОП обнуляется при включении и выключении компьютера.

Память произвольного доступа

RAM(Random Access Memory – память произвольного доступа).


Оперативная память относится к категории динамической памяти DRAM (Dynamic RAM) и основывается на полупроводниковых конденсаторах, в которых информация хранится ограниченное время.

В микросхемах DRAM выполняется регенерация информации.

Микросхема DRAM имеет матричную организацию. Каждый элемент матрицы представляет собой миниатюрный конденсатор, который хранит 1 бит данных.

  1. Емкость ОП измеряется в байтах.
  2. В ОП адресуется каждый байт памяти. Если шина адреса - 32 разряда, то можно адресовать примерно
    4,3 Гб памяти (2 32 ).
  3. Передаваемая порция (количество битов информации, считываемое или записываемое за один цикл обращения) - слово или двойное слово.
  4. Метод доступа – произвольный, т. е. считывание (запись) данных может выполняться в любой момент времени по любому адресу.
  5. Время доступа – промежуток времени между моментом формирования запроса на чтение информации из ОП и моментом поступления из памяти запрошенного машинного слова;
  6. Длительность цикла – минимально допустимое время между двумя последовательными обращениями к ОП.

Модификации динамической памяти

  1. SDRAM (Synchronous DRAM) – синхронная динамическая память

SDRAM - это память с синхронным доступом, работающая быстрее обычной асинхронной памяти. Память SDRAM использует тактовый генератор для синхронизации всех сигналов, применяемых в микросхеме памяти.

Модули памяти с такими микросхемами получили название DIMM.

  1. DDR SDRAM (Double Data Rate) – память позволяет передавать данные по обоим фронтам каждого тактового импульса, что удваивает пропускную способность памяти.
  1. DDR2 SDRAM - конструктивно новый тип оперативной памяти - был выпущен в 2004 году.

Основывается на технологии DDR SDRAM, но за счет технических изменений показывает более высокое быстродействие.

Память может работать на частоте 667 МГц и 800 МГц.

Время полного доступа – 25; 11,25; 9 и 7,5 нс.

Время рабочего цикла – 5; 3,75; 3 и 3,5 нс.

  1. DDR3 обеспечивает сокращение потребления энергии на 40% по сравнению с модулями DDR2.

Применяется 90-нм технология производства, что позволяет снизить эксплуатационные токи и напряжения.

Частота работы DDR3 1066 МГц , 1333 и 1600 МГц .

Кэш-память – это тоже RAM память, но по принципу физической организации относится к статической памяти SRAM (Static RAM).

  1. Статическая память SRAM базируется на электрических схемах (триггерах).
  2. Статическая память SRAM имеет более высокое быстродействие, чем DRAM.
  3. Информация в SRAM может храниться сколь угодно долго.

Кэш-память распределяют по нескольким уровням.

  1. Кэш первого уровня помещается в том же кристалле, что и сам процессор, и имеет объем порядка десятков Кбайт.
  2. Кэш второго уровня находится либо в кристалле процессора, либо в том же узле, что и процессор.

Кэш-память первого и второго уровня работает на тактовой частоте, согласованной с частотой процессора (объем порядка сотен Кбайт).

  1. Кэш третьего уровня располагается на материнской плате вблизи процессора, работает на частоте материнской платы, и ее объем может достигать нескольких Мбайт.

Кэш-память состоит из трех основных элементов:

¢ кэш-память данных (DataRAM);

¢ кэш-память адресов (TagRAM).

Процессор для получения данных обращается первоначально к TagRAM, если анализ адресов показывает, что требуемых данных в кэш-памяти нет, происходит обращение к ОП.

Постоянная память или постоянное запоминающее устройство (ПЗУ) обычно содержит такую информацию, которая не должна меняться в течение длительного времени.

ПЗУ располагается на материнской плате и представляет собой одну микросхему.

Существует несколько видов постоянной памяти.

  1. ROM (Read Only Memory) – память поддерживает только режимы считывания и хранения.
  2. PROM (Programmable Read Only Memory) – можно однократно менять программу памяти после изготовления микросхемы.
  3. EPROM (Erasable Programmable Read Only Memory) – можно несколько раз менять программу памяти после изготовления микросхемы с помощью специального устройства – программатора, подключаемого через какой-либо порт.
  4. Flash Memory – память может быть перезаписана многократно непосредственно в компьютере. Имеет малое время доступа и малую длительность процесса стирания. В современных компьютерах используется Flash-память.

BIOS (Basic Input Output System) – программа, хранящаяся в постоянной памяти, получает управление при включении и сбросе материнской платы (МП) и выполняет следующие действия:

¢ осуществляет вызов блока начальной загрузки, который переносит остальную часть операционной системы (ОС) с жесткого диска в ОП;

¢ запускает тестовую программу POST (Power On Self Test), которая при включении компьютера проверяет все его основные компоненты;

¢ обеспечивает программную поддержку стандартных устройств компьютера (клавиатуры, видеокарты, дисков, шин и др.);

¢ предоставляет программу CMOS Setup для установки аппаратной конфигурации компьютера.

CMOS (КМОП) память

¢ CMOS (КМОП) память – это энергонезависимая память, которая получила свое название по технологии изготовления (Complementary Metal Oxide Semiconductor).

¢ Микросхема памяти питается от небольшой батарейки, расположенной на материнской плате (МП).

¢ Память хранит показания системных часов, результаты диагностики POST программы, информацию о размере ОП, информацию о жестком диске: номер дисковода, количество дорожек, секторов и цилиндров.

¢ За информацией о жестком диске к CMOS памяти обращается BIOS при загрузке ОС.

Каждый пользователь знает, что существует внутренняя память компьютера, но мало кто понимает, насколько она разнообразна, сколько существует различных её подтипов. Разбирая ПК, максимум, на что сможет указать неопытный человек, - это ОЗУ и жесткий диск. Давайте разберёмся, какие устройства внутренней памяти компьютера существуют.

Что это такое

внутренняя память компьютера

Для начала введём определение. Внутренняя память компьютера - это устройство для хранения программ и данных, которые в конкретный момент времени участвуют в вычислении процессором. Говоря простым языком, когда вы запускаете на персональном компьютере какое-либо приложение, процессор пользуется ОЗУ, как листком бумаги, записывая на него исходные данные и промежуточные вычисления. Выделяют следующие виды внутренней памяти компьютера - постоянную и оперативную.

Особенности

Независимо от того, о чем идёт речь, нам необходимы критерии для определения качества запоминающего устройства. Назовём главные характеристики внутренней памяти компьютера:

  1. Общий объём. Он играет немаловажную роль. От него зависит, сколько информации можно разместить одновременно в кэше, а значит, и быстродействие компьютера. Иногда процессору нужно хранить обширные объёмы данных. При малых размерах памяти они просто не поместятся, и приложение будет "тормозить".
  2. Быстродействие. Оно же - время доступа. Определяет, насколько быстро происходит взаимодействие центрального процессора и памяти. От этого параметра зависит, как скоро будет проходить процесс записи-считывания байт данных в запоминающее устройство. В отличие от объёма памяти, пользователь не способен повышать этот параметр сверх конретного уровня, поскольку он определяется конструктивными особенностями, а также существующими технологиями и интерфейсом подключения.

устройства внутренней памяти компьютера

Свойства

При рассмотрении темы статьи нельзя не упомянуть про свойства внутренней памяти компьютера. Информатика выделяет несколько критериев, по которым можно характеризовать ее.

  • Дискретность. Это такое свойство, позволяющее определить структуру любого вида памяти на компьютере. Внутренняя память состоит из множества ячеек, каждая из которых хранит всего 1 бит информации - минимальный неделимый объём. Ячейки объединяются в группы разрядов, хранящие по 8 бит, что равно 1 байту данных.
  • Адресуемость. Каждая ячейка памяти компьютера имеет свой адрес, к которому обращается процессор при работе, при необходимости извлечения данных.
  • Энергозависимость и энергонезависимость. В зависимости от типа рассматриваемой памяти, можно выделить эти подгруппы. Зависимость от электропитания означает, что при выключении компьютера все данные из памяти удаляются.

К внутренней памяти компьютера относятся ОЗУ, ПЗУ, кэш, CMOS и видеопамять, рассмотрим их поподробнее.

виды внутренней памяти компьютера

Постоянное запоминающее устройство. Было названо так, потому что данные, хранящиеся в нём, не подлежат изменению и предназначены исключительно для считывания. Содержимое этой памяти заполняется непосредственно при изготовлении, сюда могут входить программы для обслуживания персонального компьютера, поддержки операционной системы и устройств ввода-вывода, поэтому её называют ROM BIOS.

Однако эта память соответствовала своему названию исключительно на первом этапе своего создания. С развитием технологий стали выпускаться перепрограммируемые ПЗУ, для того чтобы можно было изменять их содержание в условиях эксплуатации.

свойства внутренней памяти компьютера

Оперативная память

ОЗУ (оперативное записывающее устройство) по объёму является основным представителем внутренней памяти и служит для работы с информацией. Название приходит из функционала. Скорость взаимодействия с процессором настолько высока, что проходят доли секунды между запросом и ответом. Обозначается оперативная память как RAM - Random Access Memory.

ОЗУ хранит в себе все данные работающей программы. Поэтому и процессор способен работать с ней только после того, как она будет записана в оперативную память (ОП). Для взаимодействия с жестким диском ЦПУ обращается к буферу - еще одному виду ОП.

Главным недостатком (или конструктивной особенностью) оперативной памяти является её энергозависимость. То есть при выключении питания персонального компьютера все данные, которые в ней записаны, теряются. Основными характеристиками RAM являются:

  • объем;
  • разрядность;
  • быстродействие.

Внутренняя память компьютера недостаточного объёма сильно снижает производительность. При недостатке RAM некоторые программы могут работать медленно, а некоторые откажутся запускаться вовсе.

Ещё один вид памяти персонального компьютера, являющийся самым быстродействующим. Кэш является посредником между центральным процессором и оперативной памятью. В нем хранятся наиболее часто используемые фрагменты RAM. Поскольку время обращения ЦПУ к нему намного меньше, то и среднее время работы процессора с "оперативкой" уменьшается.

к внутренней памяти компьютера относятся

CMOS-RAM

Специально выделенный участок внутренней памяти персонального компьютера для хранения его конфигурации. Своё название он получил от одноимённой технологии, которая обладает невысоким энергопотреблением. Эта память считается энергонезависимой, поскольку информация в ней не теряется при отключении питания ПК. Однако это не совсем так. Если вы вдруг забыли свой пароль от компьютера, вам достаточно снять крышку с системного блока, найти на материнской плате батарейку-таблетку и вынуть её. Без этого аккумулятора все настройки компьютера, включая пароль, будут обнулены.

Видео

Ещё одна внутренняя память персонального компьютера, служащая для хранения графической информации. В персональном компьютере существует 2 способа её реализации.

характеристики внутренней памяти компьютера

Первый - это встроенная видеокарта. В этом случае память реализуется на материнской плате. Второй вариант реализации видеопамяти - на встраиваемой видеокарте. Как и при работе с оперативкой, от объёма зависит количество информации, обрабатываемой центральным процессором, и скорость её вывода на экран. От объёма видеопамяти зависит быстродействие мощных графических редакторов, высококачественного видео и современных игр.

Развитие

Внутренняя память компьютера развивалась постепенно, проходя множество этапов. Говоря об ОП, можно выделить следующие её виды в порядке совершенствования:

  1. SIMM - самый первый прообраз оперативной памяти персонального компьютера. Имел 30 контактов общей длиной в 89 миллиметров. В настоящий момент найти такую планку практически невозможно.
  2. SIMM на 72 контакта являлась следующим шагом в развитии, но имела ещё большие размеры - примерно 103 миллиметра.
  3. DIMM - оперативная память, которую застали обычные пользователи. Была популярна вплоть до 2001 года.
  4. После всех предыдущих этапов наступила эра памяти формата DDR (184 контакта). Эта технология в корне меняет подход к проектированию. Вместо ускорения частоты обмена данными в ней увеличивается количество данных, передаваемых за один такт.
  5. DDR2 - имеющая 204 контакта, она должна была увеличить скорость работы и взаимодействия с процессором в 2 раза по сравнению со своим предшественником.
  6. DDR3 - очередной виток эволюции памяти, имеющей повышенные характеристики.
  7. DDR4 - вышедшая во втором квартале 2014 года в массовые продажи оперативная память. Имеет 288 контактов и увеличенную в 2 раза пропускную способность.

Вывод

Прочитав эту статью, вы узнали, что такое внутренняя память компьютера, каково её строение, виды и характеристики. В жизни это может мало пригодиться, разве что для сдачи экзаменов в университете или общего самообразования.

Читайте также: