Взаимодействие компьютеров в сети что относится к аппаратным средствам

Обновлено: 05.07.2024

1. Каналы передачи данных по компьютерным сетям

Для того чтобы компьютеры могли связаться между собой в сеть, они должны быть соединены между собой с помощью некоторой физической передающей среды. Основными типами передающих сред, используемых в компьютерных сетях, являются:

· аналоговые телефонные каналы общего пользования;

· цифровые каналы;

· узкополосные и широкополосные кабельные каналы;

· радиоканалы и спутниковые каналы связи;

· оптоволоконные каналы связи.

Аналоговые каналы связи первыми начали применяться для передачи данных в компьютерных сетях и позволили использовать уже существовавшие тогда развитые телефонные сети общего пользования. Передача данных по аналоговым каналам может выполняться двумя способами. При первом способе телефонные каналы (одна или две пары проводов) через телефонные станции физически соединяют два устройства, реализующие коммуникационные функции с подключенными к ним компьютерами. Такие соединения называют выделенными линиями или непосредственными соединениями. Второй способ - это установление соединения с помощью набора телефонного номера (с использованием коммутируемых линий ).

Качество передачи данных по выделенным каналам, как правило, выше и соединение устанавливается быстрее . Кроме того, на каждый выделенный канал необходимо свое коммуникационное устройство (хотя есть и многоканальные коммуникационные устройства), а при коммутируемой связи можно использовать для связи с другими узлами одно коммуникационное устройство.

Параллельно с использованием аналоговых телефонных сетей для межкомпьютерного взаимодействия начали развиваться и методы передачи данных в дискретной (цифровой) форме по ненагруженным телефонным каналам (т.е. телефонным каналам, к которым не подведено электрическое напряжение, используемое в телефонной сети) - цифровым каналам .

Следует отметить, что наряду с дискретными данными по цифровому каналу можно передавать и аналоговые информацию (голосовую, видео, факсимильную и т.д.), преобразованную в цифровую форму.

Наиболее высокие скорости на небольших расстояниях могут быть получены при использовании особым образом скрученной пары проводов (для того, чтобы избежать взаимодействия между соседними проводами), так называемой витой паре ( ТР - Twisted Pair ).

Кабельные каналы , или коаксиальные пары представляют собой два цилиндрических проводника на одной оси, разделенные диэлектрическим покрытием. Один тип коаксиального кабеля (с сопротивлением 50 Ом), используется главным образом, для передачи узкополосных цифровых сигналов, другой тип кабеля (с сопротивлением 75 Ом) - для передачи широкополосных аналоговых и цифровых сигналов. Узкополосные и широкополосные кабели, непосредственно связывающие между собой коммуникационные оборудования , позволяют обмениваться данными на высоких скоростях (до нескольких мегабит/c) в аналоговой или цифровой форме. Следует отметить, что на небольших расстояниях (особенно в локальных сетях) кабельные каналы все больше вытесняются каналами на витых парах, а на больших расстояниях - оптоволоконными каналами связи.

Использование в компьютерных сетях в качестве передающей среды радиоволн различной частоты является экономически эффективным либо для связи на больших и сверхбольших расстояниях (с использованием спутников), либо для связи с труднодоступными, подвижными или временно используемыми объектами.

Частоты, на которых функционируют радиосети за рубежом, обычно используют диапазон 2-40 ГГц (в особенности диапазон 4-6 ГГц). Узлы в радиосети могут быть расположены (в зависимости от используемой аппаратуры) на расстоянии до 100 км друг от друга.

Спутники обычно содержат несколько усилителей (или транспондеров), каждый из которых принимает сигналы в заданном диапазоне частот (обычно 6 или 14 ГГЦ) и регенерирует их в другом частотном диапазоне (например, 4 или 12 ГГц). Для передачи данных обычно используются геостационарные спутники, размещенные на экваториальной орбите на высоте 36000 км. Такое расстояние дает существенную задержку сигнала (в среднем 270 мс) для компенсации которой используют специальные методы.

Обмен данными по радиоканалам может вестись как с помощью аналоговых, так и цифровых методов передачи. Цифровые методы получают в последнее время преимущественное развитие, т.к. позволяют объединить наземные участки цифровых сетей и спутниковых каналов или радиоканалов в единой сети. Новым импульсом в развитии радиосетей стало появление сотовой телефонной связи, позволяющей осуществлять голосовую связь и обмен данными с помощью радиотелефонов или специальных устройств обмена данными.

Помимо обмена данными в радиодиапазоне последнее время для связи на небольшие расстояния (обычно в пределах комнаты) используется и инфракрасное излучение .

В оптоволоконных каналах связи используется известное из физики явления полного внутреннего отражения света, что позволяет передавать потоки света внутри оптоволоконного кабеля на большие расстояния практически без потерь. В качестве источников света в оптоволоконном кабеле используются светоиспускающие диоды ( LED - light-emitting diode ) или лазерные диоды, а в качестве приемников - фотоэлементы.

Оптоволоконные каналы связи, несмотря на их более высокую стоимость по сравнению с другими видами связи, получают все большее распространение, причем не только для связи на небольшие расстояния, но и на внутригородских и междугородных участках.

Коммутация каналов , обеспечиваемая телефонной сетью общего пользования, позволяет, с помощью коммутаторов, установить прямое соединение между узлами сети.

При пакетной коммутации данные пользователя разбиваются на более мелкие порции - пакеты, причем каждый пакет содержит служебные поля и поле данных. Существуют два основных способа передачи данных при пакетной коммутации: виртуальный канал, когда между узлами устанавливается и поддерживается соединение как бы по выделенному каналу (хотя на самом деле физический канал передачи данных разделен между несколькими пользователями) и дейтаграммный режим, когда каждый пакет из набора пакетов, содержащего данные пользователя, передается между узлами независимо друг от друга. Первый способ соединения называют также контактным режимом ( connection mode ), второй - бесконтактным ( connectionless mode ).

2. Топология сети

Под топологией понимается описание свойств сети, присущих всем ее гомоморфным преобразованиям, т.е. таким изменениям внешнего вида сети, расстояний между ее элементами, их взаимного расположения, при которых не изменяется соотношение этих элементов между собой.

Топология компьютерной сети во многом определяется способом соединения компьютеров друг с другом. Топология во многом определяет многие важные свойства сети, например такие, как надежность (живучесть), производительность и др. Существуют разные подходы к классификации топологий сетей. Согласно одному из них конфигурации локальных сетей делятся на два основных класса: широковещательные и последовательные.

В широковещательных конфигурациях каждый ПК (приемо-передатчик физических сигналов) передает сигналы, которые могут быть восприняты остальными ПК. К таким конфигурациям относятся топологии “общая шина”, “дерево”, “звезда с пассивным центром”. Сеть типа “звезда с пассивным центром” можно рассматривать как разновидность “дерева”, имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, “кольцо”, “цепочка”, “звезда с интеллектуальным центром”, “снежинка” и другие.

Наиболее оптимальной с точки зрения надежности (возможности функционирования сети при выходе строя отдельных узлов или каналов связи) является полносвязная сеть, т.е. сеть, в который каждый узел сети связан со всеми другими узлами, однако при большом числе узлов такая сеть требует большого количества каналов связи и труднореализуема из-за технических сложностей и высокой стоимости. Поэтому практически все сети являются неполносвязными.

Хотя при заданном числе узлов в неполносвязной сети может существовать большое количество вариантов соединения узлов сети, на практике обычно используется три наиболее широко распространенные (базовые) топологии ЛВС: “звезда”, “общая шина” и “кольцо”.

· шинная, когда все узлы сети подключаются к одному незамкнутому каналу, обычно называемому шиной.


Рис. Топология «Шина»

В данном случае, одна из машин служит в качестве системного обслуживающего устройства, обеспечивающего централизованный доступ к общим файлам и базам данных, печатающим устройствам и другим .вычислительным ресурсам. Сети данного типа приобрели большую популярность благодаря низкой стоимости, высокой гибкости и скорости передачи данных, легкости расширения сети (подключение новых абонентов к сети не сказывается на ее основных характеристиках). К недостаткам шинной топологии следует отнести необходимость использования довольно сложных протоколов и уязвимость в отношении физических повреждений кабеля.

· кольцевая, когда все узлы сети подключаются к одному замкнутому кольцевому каналу .


Рис. Топология «Кольцо»

Эта структура сети характеризуется тем, что информация по кольцу может передаваться только в одном направлении и все подключенные ПЭВМ могут участвовать в ее приеме и передаче. При этом абонент-получатель должен пометить полученную информацию специальным маркером, иначе могут появиться «заблудившиеся» данные, мешающие нормальной работе сети.

· звездообразная , когда все узлы сети подключаются к одному центральному узлу, называемому хостом ( host ) или хабом ( hub ).


Рис. Топология «Звезда»

конфигурацию можно рассматривать как дальнейшее развитие структуры «дерево с корнем» с ответвлением к каждому подключенному устройству. В центре сети обычно размещается коммутирующее устройство, обеспечивающее жизнеспособность системы. ЛВС подобной конфигурации находят наиболее частое применение в автоматизированных учрежденческих системах управления, использующих центральную базу данных. Звездообразные ЛВС, как правило, менее надежны, чем сети с общей шиной или иерархические, но эта проблема решается дублированием аппаратуры центрального узла. К недостаткам можно также отнести значительное потребление кабеля (иногда в несколько раз превышающее расход в аналогичных по возможностям ЛВС с общей шиной или иерархических).

Сети могут быть также смешанной топологии (гибридные), когда отдельные части сети имеют разную топологию. Примером может служить локальная сеть FDDI , в которой основные (магистральные) узлы подключаются к кольцевому каналу, а к ним по иерархической топологии подключаются остальные узлы.

3. Дисциплина обслуживания компьютерных сетей

По дисциплине обслуживания сети подавляющее большинство современных компьютерных сетей используют технологию "клиент-сервер" ( client - server ) или одноранговую (peer-to-peer) технологию .

При работе по технологии "клиент-сервер" пользователи делят сетевые ресурсы (такие, как базы данных, файлы или принтеры) с другими пользователями.

Под сервером понимается комбинация аппаратных и программных средств, которая служит для управления сетевыми ресурсами общего доступа. Он обслуживает другие станции, предоставляя общие ресурсы и услуги для совместного использования.


В сетях с выделенным сервером в основном именно ресурсы сервера, чаще всего дисковая память, доступны всем пользователям. Серверы, разделяемым ресурсом которых является дисковая память, называются файл-серверами.

Файловый и принт-серверы обычно используются администратором сети и не предназначены для решения прикладных задач. На этих серверах устанавливается сетевая операционная система.

Компьютеры, использующие сетевые ресурсы сервера, называются клиентами . Взаимодействие с серверами прозрачно для пользователя, поскольку компьютер сам определяет место нахождения требуемого ресурса, и сам получает к нему доступ.

Каждый компьютер сети имеет уникальное сетевое имя, позволяющее однозначно его идентифицировать. Для каждого пользователя серверной сети необходимо иметь свое сетевое имя и сетевой пароль. Имена компьютеров, сетевые имена и пароли пользователей прописываются на сервере.

Для удобства управления компьютерной сетью, несколько компьютеров, имеющих равные права доступа, объединяют в рабочие группы. Рабочая группа – группа компьютеров в локальной сети.

Совокупность приемов разделения и ограничения прав доступа участников компьютерной сети к ресурсам называется политикой сети. Обеспечением работоспособности сети и ее администрированием занимается системный администратор – человек, управляющий организацией работы компьютерной сети.

Рабочая станция — это индивидуальное рабочее место пользователя. На рабочих станциях устанавливается обычная операционная система. Кроме того, на рабочих станциях устанавливается клиентская часть сетевой операционной системы. Полноправным владельцем всех ресурсов рабочей станции является пользователь, тогда как ресурсы файл-сервера разделяются всеми пользователями. В качестве рабочей станции может использоваться компьютер практически любой конфигурации. Но, в конечном счете, все зависит от тех приложений, которые этот компьютер выполняет.

В одно ранговых сетях все компьютеры, как правило, имеют доступ к ресурсам других компьютеров, т.е. все компьютеры сети являются равноправными. Одноранговая ЛВС предоставляет возможность такой организации работы компьютерной сети, при которой каждая рабочая станция одновременно может быть и сервером. Преимущество одноранговых сетей заключается в том, что разделяемыми ресурсами могут являться ресурсы всех компьютеров в сети и нет необходимости копировать все используемые сразу несколькими пользователями файлы на сервер. В принципе, любой пользователь сети имеет возможность использовать все данные, хранящиеся на других компьютерах сети, и устройства, подключенные к ним. Затраты на организацию одноранговых вычислительных сетей относительно небольшие. Однако при увеличении числа рабочих станций эффективность их использования резко уменьшается. Пороговое значение числа рабочих станций, по оценкам фирмы Novell, составляет 25. Основной недостаток работы одноранговой сети заключается в значительном увеличении времени решения прикладных задач. Это связано с тем, что каждый компьютер сети отрабатывает все запросы, идущие к нему со стороны других пользователей. Следовательно, в одноранговых сетях каждый компьютер работает значительно интенсивнее, чем в автономном режиме. Существует еще несколько важных проблем, возникающих в процессе работы одноранговых сетей: возможность потери сетевых данных при перезагрузке рабочей станции и сложность организации резервного копирования.


Рис. Одноранговая сеть

Поэтому одноранговые ЛВС используются только для небольших рабочих групп, а все сетевые архитектуры для крупномасштабных сетей поддерживают технологию "клиент-сервер".

4. Сетевое оборудование

Технические средства коммуникаций составляют кабели (экранированная и неэкранированная витая пара, коаксиальный, оптоволоконный), коннекторы и терминаторы, сетевые адаптеры, повторители, разветвители, мосты, маршрутизаторы, шлюзы, а также модемы, позволяющие использовать различные протоколы и топологии в единой неоднородной системе.Сетевая карта (адаптер) — устройство для подключения компьютера к сетевому кабелю.


Рис. Сетевая карта

В качестве физической среды для обмена информацией обычно используются: толстый (thick) коаксиальный кабель, тонкий (thin) коаксиальный кабель, оптоволоконный кабель и неэкранированная витая пара (Unshielded Twisted-Pair, UTP).

Современные компьютеры для обеспечения максимальной производительности и корректной работы используют аппаратные и программные средства, которые очень связаны между собой и четко взаимодействуют в разных направлениях. Сейчас коснемся рассмотрения аппаратных средств, поскольку изначально именно они занимают главенствующее положение в обеспечении работоспособности любой компьютерной или даже мобильной системы.

Аппаратные средства систем: общая классификация

Итак, с чем же мы имеем дело? На самом деле комплекс аппаратных средств знаком всем и каждому. По сути, многие пользователи называют его компьютерным «железом». Действительно, аппаратные средства – это именно «железные», а не программные компоненты любой компьютерной системы. В самом простом варианте классификации они разделяются на внутренние и внешние.

аппаратные средства

Кроме того, в таком разделении можно выделить три основных и наиболее содержательных класса устройств:

  • устройства ввода;
  • устройства вывода;
  • устройства хранения информации.

Естественно, отдельно стоит отметить и главные элементы компьютерных систем вроде материнской платы, процессора и т. д., не входящие ни в один из вышеперечисленных классов и являющиеся базовыми элементами, без которых ни один компьютер попросту работать не будет.

Базовые элементы компьютера

Описывая аппаратные средства любого компьютера, начать стоит с самого главного элемента – материнской платы, на которой расположены все внутренние элементы. И к ней же за счет применения разного рода разъемов и слотов подключаются внешние устройства.

комплекс аппаратных средств

Сегодня существует достаточно много разновидностей «материнок» и их производителей. Правда, такие платы для стационарных компьютеров и ноутбуков и по форме, и по расположению отдельных элементов могут различаться. Тем не менее суть их применения в компьютерных системах не меняется.

аппаратные средства защиты

Второй по важности элемент – центральный процессор, который отвечает за быстродействие. Одной из главных характеристик является тактовая частота, выраженная в мега- или гигагерцах, а проще говоря, величина, определяющая, сколько элементарных операций может производить процессор за одну секунду. Нетрудно догадаться, что быстродействие есть не что иное, как отношение количества операций к числу тактов, которое необходимо для выполнения (вычисления) одной элементарной операции.

Аппаратные средства компьютера невозможно себе представить без планок оперативной памяти и жестких дисков, которые относятся к устройствам хранения. О них будет сказано несколько позже.

Программно-аппаратные средства

В современных компьютерах применяются и устройства гибридного типа, такие, например, как ПЗУ или постоянная энергонезависимая память CMOS, которая является основой базовой системы ввода/вывода, называемой BIOS.

аппаратное средство информации

Это не только «железный» чип, распложенный на материнской плате. В нем имеется собственная микропрограмма, позволяющая не только хранить неизменяемые данные, но и проводить тестирование внутренних компонентов и периферийных устройств в момент включения компьютера. Наверное, многие владельцы стационарных ПК замечали, что в момент включения слышен сигнал системного динамика. Это как раз и свидетельствует о том, что проверка устройств прошла успешно.

Средства ввода информации

Теперь остановимся на устройствах ввода. На данный момент их разновидностей можно насчитать достаточно много, а судя по развитию IT-технологий, вскоре их станет еще больше. Тем не менее базовыми в этом списке принято считать следующие:

  • клавиатура;
  • мышь (трекпад для ноутбуков);
  • джойстик;
  • цифровая камера;
  • микрофон;
  • внешний сканер.

Каждое из этих устройств позволяет ввести разный тип информации. К примеру, с помощью сканера вводится графика, с помощью камеры – видеоизображение, на клавиатуре – текст и т. д. Однако и мышь, и трекпад в дополнение ко всему являются еще и контроллерами (манипуляторами).

аппаратные средства систем

Что касается клавиатуры, контролирующие функции в ней используются через кнопки или их сочетания. При этом можно получить и доступ к определенным функциям, параметрам и командам операционных систем или другого программного обеспечения.

Средства вывода информации

Аппаратные средства невозможно представить себе и без устройств вывода. В стандартном списке присутствуют следующие:

  • монитор;
  • принтер;
  • плоттер;
  • звуковая и видеосистема;
  • мультимедийный проектор.

аппаратные и программные средства

Здесь основным является компьютерный монитор или экран ноутбука. Понятно ведь, что при современных методах объектно-ориентированного программирования взаимодействие с пользователем осуществляется через графический интерфейс, хотя в равной степени такая ситуация применима и к системам, в которых предполагается ввод команд. В любом случае пользователь должен видеть то, что отображается на экране.

Что же касается остальных элементов, они желательны, хотя и не обязательны (ну разве что графический адаптер, без которого современные системы могут и не работать).

Средства хранения информации

Наконец, один и самых важных классов – устройства хранения информации. Их наличие, будь то внутренние компоненты или внешние носители, просто обязательно. К этому классу относят следующие разновидности:

  • жесткий диск (винчестер);
  • оперативная память;
  • кэш-память;
  • внешние накопители (дискеты, оптические диски, USB-устройства).

Иногда сюда включают также систему BIOS с CMOS-памятью, однако, как уже было сказано выше, это скорее гибридные устройства, которые можно отнести в равной степени к разным категориям.

программно аппаратные средства

Безусловно, главное место здесь занимают жесткие диски и «оперативка». Жесткий диск – это аппаратное средство информации (вернее, средство ее хранения), ведь на нем она хранится постоянно, а в оперативной памяти – временно (при запуске или функционировании программ, копировании содержимого в буфер обмена и т. д.).

аппаратные средства

При выключении компьютера оперативная память автоматически очищается, а вот информация с винчестера никуда не девается. В принципе, сейчас с винчестером конкурируют и съемные носители вроде USB-устройств большой емкости, а вот дискеты и оптические диски уходят в небытие хотя бы по причине их малой емкости и возможности физических повреждений.

Устройства связи

Необязательным классом, хотя в современном мире и очень востребованным, можно назвать и устройства, отвечающие за обеспечение связи как между отдельными компьютерными терминалами, связанными напрямую, так и в сетях (или даже на уровне выхода в Интернет). Здесь из основных устройств можно выделить такие:

  • сетевые адаптеры;
  • маршрутизаторы (модемы, роутеры и т. д.).

Как уже понятно, без них не обойтись при организации сетей (стационарных или виртуальных), при обеспечении доступа во Всемирную паутину. А ведь мало кто сегодня знает, что два компьютера, например, можно соединять посредством кабеля напрямую, как это делалось лет двадцать назад. Конечно, это выглядит несколько непрактично, тем не менее, забывать о такой возможности не стоит, особенно когда нужно копировать большие объемы информации, а подходящего носителя под рукой нет.

Устройства безопасности и защиты данных

Теперь еще об одном типе устройств. Это аппаратные средства защиты, к которым можно отнести, например, «железные» сетевые экраны, называемые еще файрволлами (firewall с английского - «огненная стена»).

комплекс аппаратных средств

Почему-то сегодня большинство юзеров привыкло, что файрволл (он же брэндмауэр) представляет собой исключительно программный продукт. Это не так. При организации сетей с повышенным уровнем безопасности применение таких компонентов не то что желательно, а иногда даже просто необходимо. Согласитесь, ведь программная часть не всегда справляется со своими функциями и может вовремя не отреагировать на вмешательство в работу сети извне, не говоря уже о доступе к конфиденциальной информации, хранящейся на жестких дисках компьютеров или серверов.

Взаимодействие программных и аппаратных средств

Итак, аппаратные средства мы вкратце рассмотрели. Теперь несколько слов о том, как они взаимодействуют с программными продуктами.

аппаратные средства защиты

Согласитесь, у операционных систем, которые и обеспечивают доступ пользователя к вычислительным возможностям ПК, есть свои требования. Современные «операционки» пожирают столько ресурсов, что с устаревшими процессорами, в которых не хватает вычислительной мощности, или при отсутствии необходимого объема оперативной памяти они работать просто не будут. Это, кстати, в равной степени относится и к современным прикладным программам. И, конечно же, это далеко не единственный пример подобного взаимодействия.

Заключение

Напоследок стоит сказать, что аппаратная часть современного компьютера была рассмотрена достаточно кратко, однако сделать выводы о классификации основных элементов системы можно. Кроме того, стоит обратить внимание, что компьютерная техника развивается, а это ведет еще и к тому, что внешних и внутренних устройств разного типа появляется все больше (взять хотя бы виртуальные шлемы). Но что касается базовой конфигурации, в данном случае приведены самые главные компоненты, без которых сегодня невозможно существование ни одной компьютерной системы. Впрочем, здесь по понятным причинам не рассматривались мобильные девайсы, ведь у них устройство несколько отличается от компьютерных терминалов, хотя и имеется довольно много общего.

ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.

ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.

ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".

В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."

2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.

В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".

6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.

ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.

Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.

Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .

Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .

1 бит- 2 варианта,

2 бита- 4 варианта,

3 бита- 8 вариантов;

Продолжая дальше, получим:

4 бита- 16 вариантов,

5 бит- 32 варианта,

6 бит- 64 варианта,

7 бит- 128 вариантов,

8 бит- 256 вариантов,

9 бит- 512 вариантов,

10 бит- 1024 варианта,

N бит - 2 в степени N вариантов.

В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.

ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.

СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).

ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.

A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.

Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.

Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.

Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,

Остальные единицы объема информации являются производными от байта:

1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,

1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,

1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,

1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.

Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.

СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.

1 БОД = 1 БИТ/СЕК.

В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.

7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ

ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.

Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.

Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте

Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.

Аппаратура [1] локальных сетей обеспечивает взаимодействие сетевых абонентов. Выбор аппаратных средств имеет важнейшее значение на этапе проектирования сети, так как стоимость оборудования составляет существенную часть от стоимости сети в целом, а замена аппаратуры связана не только с дополнительными расходами, но и с трудоемкими работами. К аппаратуре локальных вычислительных сетей относятся:

- кабели для передачи информации;

- разъемы для присоединения кабелей;

Сетевые адаптеры (контроллеры, карты, платы, интерфейсы, NIC – Network Interface Card) – это основная часть аппаратуры локальной сети. Назначение сетевого адаптера – сопряжение (соединение) компьютера (или другого абонента) с сетью, то есть обеспечение обмена данными между абонентом и каналом связи в соответствии с принятыми протоколами обмена. Они реализуют функции двух нижних уровней модели OSI. Как правило, сетевые адаптеры выполняются в виде платы, вставляемой в слоты расширения системной магистрали (шины) компьютера (чаще всего PCI, ISA или PC-Card). Плата сетевого адаптера имеет один или несколько внешних разъемов для подключения к ней сетевого кабеля.

Сетевые адаптеры Ethernet могут выпускаться со следующими наборами разъемов:

- TPO – разъем RJ-45 (для кабеля на витых парах по стандарту 10BASE-T);

- TPC – разъемы RJ-45 (для кабеля на витых парах 10BASE-T) и BNC (для коаксиального кабеля 10BASE2);

- Combo – разъемы RJ-45 (10BASE-T), BNC (10BASE2), AUI;

- Coax – разъемы BNC, AUI;

- FL – разъем ST (для волоконно-оптического кабеля 10BASE-FL).

К основным функциям сетевых адаптеров относятся:

- гальваническая развязка компьютера и информационной среды локальной сети (используется передача данных через импульсные трансформаторы);

- преобразование логических сигналов в сетевые (световые или электрические) и обратно;

- кодирование и декодирование сетевых сигналов (прямое и обратное преобразование сетевых кодов передачи информации;

- селекция принимаемых сетевых пакетов (выбор из приходящих пакетов адресованных данному абоненту);

- преобразование параллельного кода в последовательный при передаче данных и обратное преобразование при приеме;

- накопление (буферизация) передаваемых и принимаемых данных в памяти сетевого адаптера;

- организация доступа к сети в соответствии с принятым методом управления обменом;

- вычисление контрольной суммы пакетов при передаче и приеме.

Стандартный алгоритм взаимодействия компьютера с сетевым адаптером происходит следующим образом. Если компьютеру необходимо передать пакет, то он сначала формирует этот пакет в своей оперативной памяти, затем пересылает его в буферную память сетевого адаптера и дает ему команду на передачу. Адаптер анализирует текущее состояние сети и при первой возможности передает пакет в сеть (выполняет управление доступом к среде передачи данных). При этом он производит преобразование информации из буферной памяти в последовательный вид для побитной передачи по сети, вычисляет контрольную сумму, кодирует биты пакета в сетевой код и через узел гальванической развязки выдает пакет в кабель сети.

Если по сети приходит пакет, то сетевой адаптер через узел гальванической развязки принимает биты этого пакета, производит их декодирование из сетевого кода и сравнивает сетевой адрес приемника из пакета со своим собственным адресом (адрес сетевого адаптера устанавливается его производителем). При совпадении адреса сетевой адаптер записывает пришедший пакет в свою буферную память и сообщает компьютеру (сигналом аппаратного прерывания) о том, что получен пакет и его обработать. Одновременно с записью пакета производится вычисление контрольной суммы, что позволяет к завершению процесса приема сделать вывод о наличии в нем ошибок. Буферная память позволяет освободить компьютер от непрерывного контроля сети и обеспечивает высокую степень готовности сетевого адаптера к приему информации. Сетевой адаптер выполняет функции двух нижних уровней модели OSI.

Все остальное аппаратное обеспечение локальных сетей (кроме адаптеров) имеет вспомогательный, дополнительный характер - это промежуточные сетевые устройства.

Приемопередатчики или трансиверы (TRANsmitter + reCEIVER) используют для передачи информации между адаптером и кабелем сети или между двумя сегментами (частями) сети. Трансиверы усиливают сигналы, преобразуют их уровни или преобразуют сигналы в другую форму (например, из электрической в световую и обратно). Трансиверами, кроме того называют встроенные в адаптер приемопередатчики.

Репитеры (repeater) или повторители в отличие от трансиверов выполняют более простую функцию. Они не преобразуют ни уровни сигналов, ни их физическую природу, а только восстанавливают слабые сигналы (их амплитуду и форму), приводя их к первоначальному виду. Цель такой ретрансляции сигналов состоит в увеличении протяженности сети.

Концентраторы (хабы, hub) используют для объединения в сеть нескольких сегментов. Концентраторы (или репитерные концентраторы) представляют собой несколько репитеров, они выполняют те же функции, что и повторители. Концентраторы иногда вмешиваются в обмен для устранения некоторых явных ошибок. Они работают на первом уровне модели OSI, так как имеют дело только с физическими сигналами, с битами пакета и не анализируют его содержимое, рассматривая пакет как единое целое. На этом же уровне работают трансиверы и репитеры.

Коммутаторы (свичи, switch, коммутирующие концентраторы), как и концентраторы, служат для объединения сегментов сети. Они выполняют более сложные функции, производя сортировку поступающих пакетов с данными. Коммутаторы передают из одного сегмента сети в другой не все поступающие на них пакеты, а те, которые адресованы компьютерам того сегмента. Пакеты, передаваемые между абонентами одного сегмента, через коммутатор в другой сегмент не попадают. При этом сам пакет коммутатором не принимается, а только пересылается. Интенсивность обмена в сети уменьшается из-за разделения нагрузки, поскольку каждый сегмент работает не только со своими пакетами, но и с пакетами, пришедшими из других сегментов, а коммутатор не пропускает лишних. Коммутатор работает на втором уровне модели OSI (подуровень MAC), так как анализирует МАС-адреса внутри пакета. Кроме того, он выполняет и функции первого уровня.

Мосты (bridge), маршрутизаторы (router) и шлюзы (gateway) служат для объединения в одну сеть нескольких разнородных сетей с разными протоколами обмена нижнего уровня: с разными форматами пакетов, методами кодирования, скоростью передачи и др. В результате их использования сложная и неоднородная сеть, содержащая в себе различные сегменты, с точки зрения пользователя выглядит обычной сетью. Все эти устройства гораздо дороже, чем концентраторы, так как они выполняют довольно сложную обработку информации. Реализуются они обычно на базе компьютеров, подключенных к сети с помощью сетевых адаптеров - они представляют собой специализированные абоненты (узлы) сети.

Мосты - наиболее простые устройства из трех перечисленных выше, служащие для объединения сетей с разными стандартами обмена, например, Ethernet и Arcnet, или нескольких частей (сегментов) одной и той же сети, например, Ethernet. В последнем случае мост, как и коммутатор, только разделяет нагрузку сегментов, повышая тем самым производительность сети в целом. В отличие от коммутаторов мосты принимают поступающие пакеты данных целиком и в случае необходимости производят их несложную обработку. Мосты, как и коммутаторы, работают на втором уровне модели OSI. В последнее время они вытесняются коммутаторами, которые становятся все более функциональными.

Маршрутизаторы осуществляют выбор оптимального маршрута для каждого пакета с целью избежание чрезмерной нагрузки отдельных участков сети и обхода ее поврежденных участков. Они применяются в сложных разветвленных сетях, имеющих несколько альтернативных маршрутов между отдельными абонентами. Маршрутизаторы не преобразуют протоколы нижних уровней, поэтому они могут соединять только сегменты одноименных сетей. Маршрутизаторы работают на третьем уровне модели OSI, так как они глубоко проникают в инкапсулированный пакет и анализируют не только физический адрес пакета, но и сетевой.

Шлюзы – это устройства для соединения сетей с различными протоколами, например, для соединения локальных сетей с глобальными сетями. Это сложное, дорогое и редко применяемое сетевое оборудование. Шлюзы реализуют связь между абонентами с четвертого по седьмой уровень модели OSI. Соответственно, они выполняют и все функции нижестоящих уровней.

[1] Кондратенко С., Новиков Ю. Основы локальных сетей [Электронный ресурс]

Читайте также: