Что такое флеш память в телефоне

Обновлено: 04.07.2024

Современному человеку нравится быть мобильным и иметь при себе различные высокотехнологичные гаджеты (англ. gadget — устройство), облегчающие жизнь, да что там скрывать, делающие ее более насыщенной и интересной. И появились-то они всего за 10-15 лет! Миниатюрные, легкие, удобные, цифровые… Всего этого гаджеты достигли благодаря новым микропроцессорным технологиям, но все же больший вклад был сделан одной замечательной технологией хранения данных, о которой сегодня мы и будем говорить. Итак, флэш-память.

Бытует мнение, что название FLASH применительно к типу памяти переводится как «вспышка». На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте «быстрый, мгновенный» при описании своих новых микросхем. Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshiba разработала архитектуру NAND, которая и сегодня используется наряду с той же NOR в микросхемах флэш. Собственно, сейчас можно сказать, что это два различных вида памяти, имеющие в чем-то схожую технологию производства. В этой статье мы попытаемся понять их устройство, принцип работы, а также рассмотрим различные варианты практического использования.

С помощью нее осуществляется преобразование входных напряжений в выходные, соответствующие «0» и «1». Они необходимы, потому что для чтения/записи данных в ячейке памяти используются различные напряжения. Схема ячейки приведена на рисунке ниже.



Она характерна для большинства флэш-чипов и представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны, то есть заряд. Также в ячейке имеются так называемые «сток» и «исток». При программировании между ними, вследствие воздействия положительного поля на управляющем затворе, создается канал — поток электронов. Некоторые из электронов, благодаря наличию большей энергии, преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, — нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтению данных из ячейки. Хочу также обратить ваше внимание на то, что в структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а, следовательно, и снизить себестоимость. Но и один бит далеко не предел: Intel уже выпускает память StrataFlash, каждая ячейка которой может хранить по 2 бита информации. Кроме того, существуют пробные образцы, с 4-х и даже 9-битными ячейками! В такой памяти используются технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что заряд их делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация бит. Теоретически прочитать/записать можно и более 4-х бит, однако, на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении. Вообще, у существующих сегодня микросхем памяти для ячеек характерно время хранения информации, измеряемое годами и число циклов чтения/записи — от 100 тысяч до нескольких миллионов. Из недостатков, в частности, у флэш-памяти с архитектурой NOR стоит отметить плохую масштабируемость: нельзя уменьшать площадь чипов путем уменьшения размеров транзисторов. Эта ситуация связана со способом организации матрицы ячеек: в NOR архитектуре к каждому транзистору надо подвести индивидуальный контакт. Гораздо лучше в этом плане обстоят дела у флэш-памяти с архитектурой NAND.

Устройство и принцип работы ячеек у нее такой же, как и у NOR. Хотя, кроме логики, все-таки есть еще одно важное отличие — архитектура размещения ячеек и их контактов. В отличие от вышеописанного случая, здесь имеется контактная матрица, в пересечениях строк и столбцов которой располагаются транзисторы. Это сравнимо с пассивной матрицей в дисплеях :) (а NOR — с активной TFT). В случае с памятью такая организация несколько лучше — площадь микросхемы можно значительно уменьшить за счет размеров ячеек. Недостатки (куда уж без них) заключаются в более низкой по сравнению с NOR скорости работы в операциях побайтового произвольного доступа.

Существуют еще и такие архитектуры как: DiNOR (Mitsubishi), superAND (Hitachi) и пр. Принципиально нового ничего они не представляют, а лишь комбинируют лучшие свойства NAND и NOR.

И все же, как бы там ни было, NOR и NAND на сегодняшний день выпускаются на равных и практически не конкурируют между собой, потому как в силу своих качеств находят применение в разных областях хранения данных. Об этом и пойдет далее речь…

Где нужна память…

  1. считать в буфер блок информации, в котором он находится
  2. в буфере изменить нужный байт
  3. записать блок с измененным байтом обратно

И будет флэш…

Безусловно, флэш — перспективная технология. Однако, несмотря на высокие темпы роста объемов производства, устройства хранения данных, основанные на ней, еще достаточно дороги, чтобы конкурировать с жесткими дисками для настольных систем или ноутбуков. В основном, сейчас сфера господства флэш-памяти ограничивается мобильными устройствами. Как вы понимаете, этот сегмент информационных технологий не так уж и мал. Кроме того, со слов производителей, на нем экспансия флэш не остановится. Итак, какие же основные тенденции развития имеют место в этой области.

Во-первых, как уже упоминалось выше, большое внимание уделяется интегрированным решениям. Причем проекты вроде Gumstix лишь промежуточные этапы на пути к реализации всех функций в одной микросхеме.


Собственно, выявлением бэдов занимается алгоритм ECC — он сравнивает записываемую информацию с реально записанной. Также в связи с ограниченным ресурсом ячеек (порядка нескольких миллионов циклов чтения/записи для каждой) важно наличие функции учета равномерности износа. Приведу такой редкий, но встречающийся случай: брелок с 32 Мбайт, из которых 30 Мбайт заняты, а на свободное место постоянно что-то записывается и удаляется. Получается, что одни ячейки простаивают, а другие интенсивно исчерпывают свой ресурс. Чтобы такого не было, в фирменных устройствах свободное пространство условно разбивается на участки, для каждого из которых осуществляется контроль и учет количества операций записи.

Еще более сложные конфигурации класса «все-в-одном» сейчас широко представлены такими компаниями как, например, Intel, Samsung, Hitachi и др. Их изделия представляют собой многофункциональные устройства, реализованные в одной лишь микросхеме (стандартно в ней имеется процессор, флэш-память и SDRAM). Ориентированы они на применение в мобильных устройствах, где важна высокая производительность при минимальных размерах и низком энергопотреблении. К таким относятся: PDA, смартфоны, телефоны для сетей 3G. Приведу пример подобных разработок — чип от Samsung, объединяющий в себе ARM-процессор (203 МГц), 256 Мбайт NAND памяти и 256 SDRAM. Он совместим с распространенными ОС: Windows CE, Palm OS, Symbian, Linux и имеет поддержку USB. Таким образом на его основе возможно создание многофункциональных мобильных устройств с низким энергопотреблением, способных работать с видео, звуком, голосом и прочими ресурсоемкими приложениями.

Другим направлением совершенствования флэш является уменьшение энергопотребления и размеров с одновременным увеличением объема и быстродействия памяти. В большей степени это касается микросхем с NOR архитектурой, поскольку с развитием мобильных компьютеров, поддерживающих работу в беспроводных сетях, именно NOR-флэш, благодаря небольшим размерам и малому энергопотреблению, станет универсальным решением для хранения и выполнения программного кода. В скором времени в серийное производство будут запущены 512 Мбит чипы NOR той же Renesas. Напряжение питания их составит 3,3 В (напомню, хранить информацию они могут и без подачи тока), а скорость в операциях записи — 4 Мбайт/сек. В то же время Intel уже представляет свою разработку StrataFlash Wireless Memory System (LV18/LV30) — универсальную систему флэш-памяти для беспроводных технологий. Объем ее памяти может достигать 1 Гбит, а рабочее напряжение равно 1.8 В. Технология изготовления чипов — 0,13 нм, в планах переход на 0,09 нм техпроцесс. Среди инноваций данной компании также стоит отметить организацию пакетного режима работы с NOR-памятью. Он позволяет считывать информацию не по одному байту, а блоками — по 16 байт: с использованием 66 МГц шины данных скорость обмена информацией с процессором достигает 92 Мбит/с!

Что ж, как видите, технология развивается стремительно. Вполне возможно, что к моменту выхода статьи появится еще что-нибудь новенькое. Так что, если что — не взыщите :) Надеюсь, материал был вам интересен.

Apple мало что рассказывает нам про внутренности своих девайсов. Как будто скрывает от нас страшную тайну!

Например, знали ли вы что в iPhone и в Android используется совершенно разный тип флеш-памяти? NVMe в iPhone и UFS в Android.


Может в этом секрет скорости девайсов Apple? Сегодня разберемся в том, как устроена флеш-память. Узнаем, чем отличаются стандарты памяти? И главное — сравним, кто всё-таки быстрее Android или iPhone! Такой информации больше нигде не найдете. Так что, читайте и смотрите до конца!

Флеш-память

Начнём с того что на флешках, картах памяти, в смартфонах и SSD-дисках — везде используют один тот же тип памяти — флеш-память. Это современная технология, пришедшая на смену магнитным носителям информации, то есть жестким дискам.

У флеш-памяти куча преимуществ. Она энергоэффективная, дешевая, прочная и безумно компактная. На чипе размером с монетку помещается до терабайта данных!

Но как удаётся хранить такие огромные объемы информации при таких крошечных размерах?

Как работает флеш-память?

Давайте разберемся как устроена флеш-память.

Базовая единица современной флэш-памяти — это CTF-ячейка. Расшифровывается как Charge Trap Flash memory cell, то есть Память с Ловушкой Заряда. И это не какая-то образная ловушка а самая настоящая.


Эта ячейка способна запирать электроны внутри себя и хранить их годами! Примерно как ловушка из фильма «Охотники за привидениями». Так что даже если ваш SSD-диск ни к чему не подключен и просто так лежит в тумбочке, знайте — он полон энергии.

Наличие или отсутствие заряда в ячейке компьютер интерпретирует как нули и единицы. В общем-то как и всё в мире технологий.


Таких ячеек много и они стоят друг над другом. Поэтому такая компоновка ячеек называется Vertical NAND или VNAND. Она крайне эффективна и очень интересно организована.


Многоэтажная память

Небольшая аналогия. Представьте, что память — это огромный многоэтажный жилой комплекс, в котором каждая квартира — это ячейка памяти.

Так вот, в одном доме этого ЖК всегда 6 подъездов, на каждом этаже одного подъезда размещается 32 квартиры, т.е. ячейки памяти. А этажей в таком доме может быть аж 136 штук, но только если это самый современный дом. Такой дом с шестью подъездами называется блоком памяти.


К чему я это всё? NAND память организована так, что она не может просто считать и записывать данные в какую-то конкретную ячейку, ну или квартиру. Она сразу считывает или перезаписывает весь подъезд!

А если нужно что-то удалить, то стирается сразу целый дом, то есть блок памяти. Даже если вы просто решили выкинуть ковер в одной квартире — не важно. Весь дом под снос!

Поэтому прежде чем удалить что-либо приходится сначала скопировать всю информацию в соседний блок.

А если памяти на диске осталось мало, меньше 30% от общего объема, то скорость работы такого диска сильно замедляется. Просто потому, что приходится искать свободный блок- место для копирования.

Так что следите за тем, чтобы память на телефоне или SSD-диске были заполнены не более чем на 70%! Иначе всё будет тупить.

Кстати, по этой же причине стирание информации потребляет намного больше энергии, чем чтение и запись. Поэтому хотите сэкономить заряд, поменьше удаляйте файлы!

Напомню, что в жестких дисках, которые HDD, другая проблема. Там информация считывается по одной ячейке. Жесткий диск вращается, а считывающая головка ездит туда-сюда по всей поверхности диска. И, если файлы разбиты на фрагменты, хранящиеся в разных концах диска — скорость падает. Поэтому, для HDD полезна дефрагментация.

Что такое спецификация?

Но вернёмся к флеш-памяти. Естественно сам по себе чип с памятью бесполезен потому как всей этой сложной структурой нужно как-то управлять. Поэтому существуют целые технологические стеки, которые всё разруливают. Их называют стандартами или спецификациями.

Есть чип с флеш-памятью, как правило это NAND память. Там хранятся данные.

А есть спецификация — это целый набор технологий вокруг чипа, программных и аппаратных, которые обеспечивают взаимодействия с памятью. Чем умнее спецификация, тем быстрее работает память.

Так какие же спецификации используются в наших смартфонах и какая из них самая умная? Давайте разберёмся.

Выход первого iPhone в 2007 году спровоцировал постепенный отказ от карт памяти. Появилась потребность в новом стандарте недорогой флеш-памяти для мобильных устройств. Так появился eMMC, что значит встроенная Мультимедиа карта или Embedded Multimedia Card. То есть прям как eSIM (Embedded SIM).

Стандарт eMMС постепенно обновлялся и его скорости росли. И eMMC до сих пор используется в большинстве смартфонов, но данный стандарт явно не рекордсмен по скорости и сильно проигрывает тем же SSD дискам.




Тогда в 2014 году появился новый стандарт с нескромным названием Universal Flash Storage или UFS! Новый стандарт был во всём лучше eMMC.


Во-первых, в UFS последовательный интерфейс. А это значит, что можно одновременно и записывать и считывать. eMMC мог делать только что-то одно. Поэтому UFS работает быстрее!


Во-вторых, он в два раза более энергоэффективный в простое.

Эффективнее работает с файлом подкачки когда ОЗУ забита. И еще, существуют UFS карты памяти, которые могут быть бесшовно интегрированы во внутреннем хранилище! Это же полноценная модульная память!

Кстати, по этой причине, внутреннюю память телефона правильнее называть eUFS. Embedded, ну вы помните.


UFS вышел сразу же в версии 2.0 в 2015 году, а первым телефоном с этим стандартом стал Samsung Galaxy S6. Samsung так гордились скоростью памяти, что даже выкинули слот microSD из Galaxy S6. Казалось бы, судьба стандартов флеш-памяти предрешена — вот он новый король. Новый USB мира флеш-памяти.

Но внезапно выходит iPhone 6s и мы видим это!



Что? Как такое возможно? Что за чудо память в этих iPhone? Похоже, Apple пошли какой-то своей дорожкой. Если стандарты eMMC и UFS — наследники каких-то там детских карт памяти, то память в iPhone — прямой наследник взрослых SSD-дисков. Потому как в iPhone используется спецификация памяти NVMe. Такая же память используется в компах и ноутбуках.

Название NVMe довольно сложно расшифровывается - NVM Express (NVMe, NVMHCI — от англ. Non-Volatile Memory Host Controller Interface Specification).

Но ключевое слово в названии Express! Почему?

Спецификация NVMe специально разрабатывалась для SSD-дисков с памятью NAND, подключенных по шине PCI Express.

NVMe создавался с нуля как новый способ эффективной работы с SSD-дисками. Из него убрали всё лишнее и сосредоточились на скорости.

Поэтому, благодаря короткому технологическому стеку, NVMe имеет большое преимущество при случайной записи и чтении блоков над остальными стандартами.


Это свойство особенно полезно для работы операционной системы, которая постоянно считывает и генерит кучу маленьких файлов размером по 4 КБ. Случайное чтение и запись NVMe — это то, что делает iPhone таким быстрым.

Но, естественно, Apple не могли просто запихнуть целый SSD в смартфон. Они модифицировали протокол NVMe и разработали свой кастомный PCI-E контроллер.

Поэтому, то что стоит в iPhone — решение абсолютно уникальное и в своё время было революционным. А они об этом даже ничего не сказали! Как всегда делает Apple.

Такая же история с MacBook. Apple первыми отказались от HDD. И они всегда ставят самую быструю память в ноуты. Во многом поэтому, даже на более слабом железе Mac ощущаются быстрее Windows-ноутбуков.

Тесты

Но вернёмся к смартфонам. Мы выяснили, что Android используют UFS-память, а Айфоны NVMe. Но проблема в том, что сложно сказать какая память действительно быстрее.

Скажем так есть, крутое сравнение от компании Micron. На базе кастомного Android девайса они сравнили NVMe и UFS 2.1 и получили преимущество NVMe по всем показателям! Вот такие:

  • Последовательная запись > 28%
  • Последовательное чтение > 15% быстрее при последовательном чтении.
  • IOPS (случайная запись и чтение) > 30%



CPDT Бенчмарк

Но кому это интересно? Сейчас много где есть UFS 3.0, а в Redmi K30 Pro вообще UFS 3.1.

Только посмотрите UFS 3.1 быстрее UFS 2.0 по разным показателям вплоть до 8 раз. Вот с чем надо сравнивать!

UFS 2.0 vs UFS 3.1

  • Последовательное чтение — 6X
  • Последовательная запись — 8X
  • Случайное чтение — 5.3X
  • Случайная запись — 5X


Значит надо просто скачать одинаковый тест под iPhone и Android, и готово! Мы узнаем — кто чемпион. Только знаете что? Нет такого теста! Поверьте мы искали. Есть спорные тесты с непонятной методологией (PerfomanceTest), но приличного ничего нет.

Кроме… Вот этого чудесного теста: Cross Platform Disk Test. Работает на всех платформах, подробно описана методология тестирования. И даже есть результаты тестов некоторых iPhone:


Но вот незадача, версия приложения для iOS так и не была выпущена.

Но мы не отчаялись! Как выяснилось, разработчика зовут Максим, он из Минска. Поэтому мы с ним связались и Макс любезно предоставил нам девелопер версию приложения под iOS.

Поэтому сегодня мы наверняка узнаем где всё-таки быстрее память: На самых последних iPhone или на самых крутых Android-смартфонах:

  • iPhone 11 Pro — NVMe
  • Oneplus 8 Pro — UFS 3.0
  • Redmi K 30 Pro — UFS 3.1
  • и Macbook Pro 16 — NVMe


В итоге побеждает дружба, в последовательной записи вроде бы все очень неплохо у Apple, но по произвольной они подчистую сливают Android-смартфонам. В копировании — буквальное равенство результатов. При этом заметьте, что Poco F2 Pro с UFS 3.1 показал себя в тестах никак и проиграл и Sony Xperia 1 II, и OnePlus 8 Pro. Возможно решает не только это! А вот в сравнении с «взрослым» NVMe в ноутбуках мобильный NVMe в 3-4 раза медленнее и это конечно не радует. С другой стороны это значит, что смартфонам есть куда расти!


Еще раз хотим поблагодарить Максима за помощь и инструкции! Помните, тест не из лёгких, поэтому если у вас будет вылетать не ругайтесь!

В современном мире телефон давно вышел за рамки простого средства связи и стал одним из атрибутов практически любого человека. Рынок полон смартфонами в самых разных ценовых категориях, так что позволить себе современный девайс могут многие жители планеты. Однако, как и любая техника, даже самые хорошие телефоны имеют свой эксплуатационный ресурс и со временем требуют ремонта.

Для многих пользователей смартфонов однажды становится актуальным вопрос ремонта или замены флеш-памяти – одного из важнейших узлов современных мобильных устройств. Все известные бренды на данный момент используют в качестве хранилища памяти используют чипы eMMC, eMCP. Что это такое? Это микросхема энергонезависимой памяти, не стоит путать с картой памяти, либо с USB-флеш-накопителем. Благодаря компактности, универсальности, механической прочности, скорости работы и большому объемы памяти данная микросхема стала популярна в изготовлении цифровой техники. Но есть и слабые стороны: относительно не долгий срок эксплуатации и чувствительность к электростатическому заряду.

ремонт платы iPhone

Основные причины выхода из строя:

  • механические повреждения устройства(падения)
  • попадание жидкости в гаджет
  • заводской дефект
  • естесственный износ

Признаки необходимости ремонта флеш-памяти

Подводные камни ремонта микрочипа памяти

Стоит обратить внимание на то, что традиционно единственной опцией, которую вам предложат в авторизированном сервисном центре будет замена системной платы (замена нерабочего узла на рабочий). Это связано с политикой многих компаний-производителей, запрещающей вмешательство в чипы, способное значительно удешевить ремонт. В итоге, мы имеем замененную плату и «заоблачную» стоимость починки. Это достаточно дорогостоящий вид ремонта, который подчас может составлять до 70% стоимости агрегата. Такой путь устраивает далеко не каждого собственника.

Многие сервисные центры «попроще» предлагают более дешевые варианты ремонта. Как правило, данный ремонт связан с нагревом микросхем и имеет непродолжительный эффект.

Владельцу гаджета необходимо помнить, что замена чипа флеш-памяти – процедура достаточно сложная и высокоточная, которая требует профессиональных навыков и специализированного оборудования.

замена Flash-памяти на смартфоне

Как происходит замена флеш-памяти?

Процесс замены осуществляется в несколько этапов. Вначале произведения замены необходимо разобрать телефон и выпаять чип при соблюдении некоторых технически сложных требований. Далее подготавливается новый чип: прошивается и аккуратно формируются шарики припоя. После этого чип устанавливается на плату. Последним этапом при помощи особого программатора на агрегат устанавливается прошивка. Если работы выполнял квалифицированный мастер, после сборки и тестирования телефон будет полностью готов к эксплуатации и характеристики его работы нисколько не ухудшатся. Напротив, путем замены flash-memory можно увеличить память устройства.

Отдав предпочтение замене flash-памяти вместо замены платы, владелец девайса часто остается в выигрыше и в материальном, и в техническом плане.

С телефонами марок Huawei, Samsung, HTC, LG, Lenovo и других популярных брендов поиск адекватного мастера и заказ услуги по замене флеш-памяти не составит почти никакого труда, а вот владельцам iPhone в этом плане придется сильно постараться – мало кто берется за высокоточный ремонт сложной «яблочной» техники. И стоит иметь в виду – если микрочип памяти на iPhone полностью вышел из строя, замена выполняется с помощью 3-4 микросхем попутно (зависит от конкретной модели) и из-за этого может стоить даже дороже, чем замена платы.

Почему стоит доверить замену флеш-памяти сервис-центру ge store

Если основные названия чипсетов, как правило, на слуху, то на тип памяти мало кто вообще обращает внимание. Вместе с тем это важный параметр при выборе, например, игровых гаджетов. Память напрямую влияет на комфорт использования смартфона и его производительность. В статье мы расскажем, какая память бывает в карманных устройствах и на что обращать внимание при выборе.

В современных смартфонах есть три типа памяти: оперативная, внутренняя и внешняя. Но если характеристики карт памяти вы легко можете узнать при покупке, то типы ОЗУ и ПЗУ производители гаджетов зачастую не указывают. Чаще всего так происходит, когда компания использует медленную память и ей нечем похвастать — это должно стать первым звоночком при выборе устройства.

Оперативная память (RAM/ОЗУ)

С оперативной памятью в смартфонах всё сравнительно просто: во всех современных гаджетах используется технология LPDDR — модификация используемой на обычных ПК технологии DDR. Приставка LP (Low Power) означает низкое энергопотребление, которое достигается, в основном, за счёт снижения рабочего напряжения и пропускной способности.

Анатомия смартфона: типы памяти в смартфонах

В современных смартфонах встречается память LPDDR трёх поколений:

  • LPDDR3 — пропускная способность до 2133 Мбит/с, частота до 933 МГц, напряжение 1,2 В;
  • LPDDR4 — пропускная способность до 3200 Мбит/с, частота до 1600 МГц, напряжение 1,1 В;
  • LPDDR4x — пропускная способность до 4266 Мбит/с, частота до 1600 МГц, напряжение 0,6 В.

Стандарт LPDDR3 к настоящему времени уже считается устаревшим, хотя всё ещё используется в бюджетных гаджетах. Память типа LPDDR4 ставится в топовые устройства, а также в смартфоны средней ценовой категории. Существует и более современный тип LPDDR4x с повышенной пропускной способностью и пониженным энергопотреблением. Именно LPDDR4x стоит отдать предпочтение, если вы хотите приобрести флагман.

Современная мобильная оперативка очень быстра, но всё-таки недостаточно для некоторых задач. Например, для съёмки видео на скорости порядка 1000 fps: такой возможностью могут похвастать Sony Xperia XZ, Samsung Galaxy S9 и Huawei P20 Pro. Чтобы съёмка такого видео стала возможной, производителям пришлось пойти на технические ухищрения и встроить DRAM-слой (Dynamic RAM или динамическое ОЗУ) прямо в CMOS-сенсор камеры. Благодаря такому решению, сверхскоростные записи сначала сохраняются в DRAM-слое, и только потом постепенно обрабатываются процессором.

Анатомия смартфона: типы памяти в смартфонах

У флагмана Sony объём такой памяти составляет 1 Гбит, а у Samsung — 2 Гбит. Это накладывает ограничения на максимальную длительность сверхскоростной съёмки, которая равна 0,182 секунды у Xperia XZ и 0,2 секунды у Galaxy S9.

Внутренняя память (ROM/ПЗУ)

Наиболее распространённый тип внутренней памяти в современных смартфонах — недорогой eMMC, взросший на базе карт памяти MMC, совместимых, в свою очередь, со стандартом SD. Иными словами, eMMC — это распаянная на материнской плате смартфона карта памяти.

Анатомия смартфона: типы памяти в смартфонах

Стандарт eMMC существует в огромном количестве версий, вот наиболее актуальные из них:

  • eMMC 4.5 — 2011 год, пропускная способность до 200 МБ/с, скорость записи до 60 МБ/с;
  • eMMC 5.0 — 2013 год, пропускная способность до 400 МБ/с, скорость записи до 90 МБ/с;
  • eMMC 5.1 — 2015 год, пропускная способность до 600 МБ/с, скорость записи до 125 МБ/с.

В конце прошлого года ожидался анонс версии eMMC 5.2, но этого всё ещё не случилось.

Главным конкурентом eMMC выступает технология UFS, разработанная компанией Samsung. В отличие от технологии eMMC, которая не что иное, как модификация карт памяти, стандарт UFS изначально разрабатывался для создания быстрой внутренней памяти. В результате, UFS имеет не только большую пропускную способность по сравнению с eMMC, но и в два раза более низкое энергопотребление.

Анатомия смартфона: типы памяти в смартфонах

К настоящему времени выпущены спецификации трёх мажорных версий стандарта UFS:

  • UFS 1.0 — 2011 год, пропускная способность до 300 МБ/с;
  • UFS 2.0 — 2013 год, пропускная способность до 1200 МБ/с;
  • UFS 3.0 — 2018 год, пропускная способность до 2900 МБ/с.

Говоря о поколениях UFS, стоит отметить ещё два важных момента. Первый — версии стандарта UFS 2.0 и UFS 2.1 немного отличаются между собой техническими деталями, но не скоростными характеристиками. Если же в бенчмарках и будет видна какая-то разница, то связана она может быть только с использованием более совершенных чипов, но не с версией спецификации. Второй — UFS 2.0/2.1 и UFS 3.0 поддерживают двухполосный режим (2-lane или dual lane), который удваивает максимальную пропускную способность интерфейса благодаря использованию двух каналов для чтения и двух каналов для записи информации. Смартфонов с двухполосной памятью UFS 2.1 сейчас выпущено немного, среди них — OnePlus 5, Samsung Galaxy S9 и Xiaomi Mi 6. Именно сверхбыстрая память помогает этим гаджетам вырываться на первые строчки в бенчмарках при сравнении с другими гаджетами на тех же чипсетах, хотя в реальной жизни разница с однополосной памятью едва ли будет заметна.

Спецификация UFS определяет только максимальную пропускную способность памяти, но не фактическую скорость чтения и записи на реальных устройствах. Поэтому, единственный способ узнать эти показатели — практические испытания. Исходя из результатов тестирования Huawei P10, UFS 2.1 может обеспечить фактическую скорость последовательной записи до 150 МБ/с, а последовательного чтения — до 750 МБ/с. У eMMC 5.1 те же показатели составляют всего 100 и 280 МБ/с для записи и чтения соответственно.

Анатомия смартфона: типы памяти в смартфонах

Слева направо: UFS 2.1, UFS 2.0, eMMC 5.1

Также стоит помнить, что скорость случайной записи и чтения для обоих типов памяти будет слишком сильно отличаться от последовательных скоростей и зависеть от различных факторов. Поэтому, её принято измерять не в МБ/с, а в количестве операций ввода-вывода в секунду (IOPS). UFS 2.0 имеет фактическую производительность 18000 IOPS при чтении и 7000 IOPS при записи, а eMMC 5.0 — 7000 IOPS при чтении и 3000 IOPS при записи. Отметим, что использование памяти в режиме последовательного чтения/записи характерно для съёмки видео или просмотра фильмов, а в случайном режиме — для повседневного использования гаджета.

eMMC и UFS поделили мобильную память между собой почти везде, за исключением iPhone и iPad. Как всегда, компания Apple пошла своим путём и, начиная с iPhone 6S, использует в своих гаджетах накопители типа NVMe. И протокол NVMe, и шина PCIe, поверх которой он работает, в «яблочных» гаджетах кастомные, поэтому называть накопитель внутри новых iPhone словом SSD не совсем честно. Хотя, такие детали мало кого волнуют, и именно Apple первой приблизилась к внедрению полноценного SSD в карманные гаджеты.

Анатомия смартфона: типы памяти в смартфонах

Apple никогда не раскрывает полных спецификаций своих компонентов, поэтому о скорости NVMe SSD внутри iPhone можно судить только по измеренной сторонними программами скорости. А она в iPhone 8 и iPhone X достигает, не много не мало, 1250 МБ/с на чтение и 350 МБ/с на запись. Для сравнения, у Galaxy S8 с памятью UFS 2.1 эти показатели составляют 800 и 200 МБ/с соответственно.

Анатомия смартфона: типы памяти в смартфонах

Сравнение скорости последовательного чтения из памяти iPhone 6S с другими смартфонами

Учитывая анонс спецификации UFS 3.0 в начале этого года, Samsung, главный двигатель прогресса в мире Android, едва ли последует примеру Apple и станет внедрять в свои гаджеты SSD. С другой стороны, даже память UFS 2.1 достаточно быстра для любых сценариев использования смартфонов (включая запись Ultra HD видео на скорости 60 fps), а Apple просто обеспечила себе запас производительности памяти на несколько лет вперёд. Так что при выборе Android-смартфона стоит обращать внимание на наличие памяти типа UFS 2.0 или UFS 2.1, а если хотите — можете дождаться устройств с UFS 3.0. Вполне возможно, что одним из первых таких гаджетов станет Galaxy Note 9 или Galaxy S10.

Внешняя память (microSD)

Вместо процветавшего ранее зоопарка форматов карт памяти, вплоть до экзотических микродрайвов для слота CF, на смартфонах уже долгое время безраздельно властвует microSD. О том, как правильно выбрать карту памяти для смартфона, мы написали целую статью, а здесь лишь кратко повторим основные советы.

Анатомия смартфона: типы памяти в смартфонах

Скорость карт памяти microSD обычно указывается в двух основных градациях: класса скорости и класса скорости UHS. Класс скорости обозначается на картах памяти числом внутри буквы «С», которое соответствует минимальной скорости последовательной записи данных. Всего существует пять классов скорости с чётными индексами, от Class 2 до Class 10. Последний соответствует скорости записи 10 МБ/с. Класс скорости UHS используется в картах памяти с поддержкой шины UHS, обозначается числом внутри буквы «U». Сейчас стандарт предусматривает два таких класса, U1 с максимальной скоростью записи 10 МБ/с и U3 с максимальной скоростью 30 МБ/с.

Анатомия смартфона: типы памяти в смартфонах

Даже если вы планируете записывать видео в разрешении Ultra HD, вам вполне хватит самого распространённого на данный момент типа скорости карты памяти — U1. А вот старые карты с обозначениями Class 6 и Class 8, не говоря уже о более медленных, вставлять в современные смартфоны не стоит: они будут ощутимо замедлять работу гаджета.

Начиная с Android 6.0 Marshmallow в операционной системе появилась возможность объединить внутреннюю и внешнюю память с помощью функции Adoptable Storage. При её включении, карта памяти форматируется и логически становится одним целым с внутренней памятью гаджета.

Анатомия смартфона: типы памяти в смартфонах

После активации функции система сама будет решать, где хранить те или иные файлы, включая установленные приложения и фотографии с камеры. Есть у такого решения и минусы: карта памяти окажется «привязана» к конкретному смартфону до следующего форматирования, а аппаратный сброс устройства удалит данные и на ней. Для правильной работы Adoptable Storage карта памяти должна иметь высокий класс скорости (желательно U1). В противном случае смартфон предупредит вас о возможном падении производительности после объединения разделов.

Анатомия смартфона: типы памяти в смартфонах

Ряд производителей, включая Samsung и Sony, блокирует эту функцию на своих гаджетах из-за возможных проблем совместимости с фирменным ПО. Вернуть Adoptable Storage можно, как правило, неофициальными способами и окольными путями (с помощью adb или имея root-доступ), но гарантировать правильную работу этой функции не сможет никто.

Анатомия смартфона: типы памяти в смартфонах

Заключение

Надеемся, что наша справка поможет вам разобраться в технологиях мобильной памяти. Конечно, при выборе гаджета в ценовой категории 10–20 тысяч рублей придирки будут излишни, но, согласитесь, было бы обидно получить в дорогом флагмане память устаревшего типа. Наиболее современной комбинацией технологий ОЗУ и ПЗУ на данный момент можно считать LPDDR4x и UFS 2.1 соответственно, но LPDDR4 и UFS 2.0 не слишком им уступают и также заслуживают внимания.

Напишите в комментариях, обращаете ли вы внимание на используемые технологии памяти при выборе смартфона, или другие компоненты смартфона имеют для вас большее значение?

Эта статья должна дать четкое представление что такое flash память в телефоне и зачем она нужна. Я потрачу немного времени и расскажу про нее, что знаю. Вы прочтите, потому что редко от мастера увидишь такие статьи. Их пишут, как правило, те кто не разбирается в вопросе)).

Flash память что это?


Рисунок 1

Рисунок 2

Производители мобильных телефонов и планшетов повсеместно начали оснащать таким чипом свои девайсы. Началось это примерно с 2013 года. Раньше применялась nand память (Рисунок 2). Причиной смены явились: скорость передачи информации, размер накопителя. Не стоит забывать, что у flash памяти eMMC свой внутренний контроллер. Он отвечает за распределение и хранение ваших файлов. А у nand чипов эту роль выполнял процессор устройства. Да и техника наша с вами постоянно совершенствуется.

Сгорела плата в телефоне.

Почему я хочу поставить акцент на этот аспект? Потому что флеш память меняется отдельно и дешевле за стоимость замены платы. С некоторой стороны заменить плату выгоднее, чем тратить время на ремонт. А самое главное, мастеров, умеющих менять отдельно flash память на пальцах можно пересчитать. Учитывайте, что плату вам установят с другого такого же телефона. То есть вы получаете кота в мешке. Где гарантии что ресурс не выработан у чипа, что стоит на ней?

Не будем останавливаться на компетентности сотрудников различных сервисов. Остановимся на том как определить что пора менять чип.

Когда нужна замена flash памяти.

А как узнать? Легко. Я пишу вам симптомы, а вы выбираете свой пункт и все становится на свои места)).

Почему сгорела флеш память?

Вот все вышеперечисленные пункты происходят от чего. Информация во флеш памяти как говорилось выше распределяется по адресам и в них хранится. Вот вы файлик сохранили в телефоне, это файлик в соответствии с таблицей файловой системы разносится по разным адресам. А нашли старую фотографию, удалили ее с телефона, осталось место свободное, следующий файл будет заполнять это место.

А вот интересный момент, так сказать яркий пример. У одного моего постоянного клиента упал телефон Xiaomi. После падения перезагружается. Батарейку не снять, нет инструмента. Он его по заряжал, кинул в сторону и взял другой телефон на время. Через месяц дошел до нас только)). Сняли мы микросхему памяти, проверяем ее специальным программатором flash памяти. Износ превысил 80%. Ну тут вроде бы понятно, удар видимо это как оправдание неисправности. У кого ж телефон не падает? Правда? А не тут то было. Мы вычитали и достали файлы (кстати есть статья про извлечение файлов из памяти) . Не путайте с понятием восстановление удаленных файлов . Заменили новую память, включаем телефон, а он перезагружается. Друзья, проблема оказалась в том, что после удара нарушилась в процессоре пайка, и вся проблема из-за контакта. А память страдала-страдала, да и выстрадала.

Достать файлы из флеш памяти.

Почему надо менять флеш память.

Замена flash памяти в телефоне и планшете.

Ставим ее в держатель для плат. Нужно для ее фиксации, чтобы она была неподвижной. И феном ее выпаиваем. Выпаиваем так, чтобы не повредить сам чип и рядом стоящие не перегреть, а это Мастерство. Повредить ее нельзя, потому что оттуда нужны фотографии хозяйке телефона.

Вот мы микросхему выпаяли и подготовили для установки в сокет для чтения программатором флеш памяти ее содержимого.

После всего этого возьмется другая микросхема, рабочая. Мы ее установим и восстановим программное обеспечение телефону. Но это уже другая история)).

sony xperia acro S Говорят, слетела флэш память. Возможно заменить? Сколько будет стоить?

Нужно произвести диагностику. Бесплатно.

Добрый день . Подскажите пожалуйста хорошего специалиста во Владикавказе. Телефон samsung
J5 (2016) мастер сказал сгорела плата, проще купить новый телефон чем починить. Телефон уже и ненужен, жалко фото видео которые остались в памяти телефона, хотелось бы их востановить если возможно такое.

Здравствуйте, это зависит от того что сгорело. Естественно не квалифицированному специалисту проще заменить системную плату нежели производить ремонт. Но с другой стороны есть неисправности при которых поможет только замена памяти. Вот, например, в этой модели нет случаев успешной замены еммс. Скорее всего это связано с аппаратной привязкой к процессору чипа и менять придется вместе две микросхемы с донора, а это равносильно стоимости материнской платы.

Сколько будет стоить замена флеш памяти на самсунг галакси А5, 2017г

Здравствуйте, ориентировочно 120 р

Еще раз здравствуйте, а что лучше выключать телефон или переключать его в режим полёта? Я правда поклонник ОС Symbian, но время берет своё. Спасибо. Удачи, добра!

Конечно же рекомендуется телефон не выключать.

Добрый день, телефон нокиа х6-00 на симбиане. Если я перекину с его платы флеш память на новую плату то они будут отображаться в телефоне? С этой новой платой?

Добрый! Что отображаться? Скорее всего, что нет

Здравствуйте! в 2018 году купила Huawei P20 lite. Через год ни с того,ни с сего отключился сам по себе,когда в сумочку положила,черный экран.В итоге,включится,как новый телефон запускался,и все было удалено ,начиная фото и заканчивая приложениями. Прошло чуть больше года, выскочило оповещение (тогда не было такого),что осталось меньше 10% памяти, почистить не успела,отключился и с концами. Отдала тел на диагностику,сразу сказали плату менять,иначе ему ничего не поможет,не подлежит ремонту. А потом попросили еще на пару дней оставить,теперь говорят,что можно флэш-память заменить.

Вопрос: стоит ли делать замену флэш-памяти ( с 2018 года телефон пашет ежедневно) или проще купить новый смартфон? Не получится ли так,что аналогичная ситуация еще раз повторится? Подскажите ,пожалуйста,как поступить. А за стать отдельное спасибо. очень познавательно

Добрый день! Несомненно стоит заменить, если Вам предлагают установку новой микросхемы. Такая процедура у нас Вам обойдется в 110 р за новую микросхему объемом 64 Гб. Гарантия будет 4 месяца.

Добрый день меняется ли флеш память на хиоми покопхон ф1, телефон тупит лагает некоторые предложения не запускает, в сервисе сказали замена платы в наличии нет когда будет хз, сток ли искать спеца по перепайки ЕМС

Здравствуйте, отдельно нет, только парой с процессором либо замена системной платы, если не помогло восстановление программного обеспечения.

Читайте также: