Какие мосфеты на материнской плате лучше

Обновлено: 04.07.2024

На все материнские платы подается постоянное напряжение, которое должно обеспечивать стабильность питания всех узлов материнской платы. Питание подается следующих номиналов: ±12, ±5 и +3,3В. При этом, по каждому каналу напряжений должен обеспечиваться соответствующий необходимый потребляемый ток.

Применение VRM

Для примера рассмотрим питание ядер процессоров модели Intel Core 2 Extreme (Conroe, техпроцесс, 65 нм, частота 2,93 ГГц, 4 Мбайт L2).

Для этого процессора значение VID находится в диапазоне 0,85–1,36525 В, максимальный ток для верхней модели E6800 может достигать величины 90 А, для остальных, представленных моделями E6300, Е6400, Е6600, Е6700, — 75 А. VRM для процессоров Intel Core 2 Duo должен удовлетворять спецификации 11.0.

Существует два типа регуляторов: линейный и импульсный. Применявшийся в более старых платах линейный регулятор напряжения представлял собой микросхему, понижающую напряжение за счет рассеяния его избытка в виде тепла. С уменьшением требуемого напряжения росла тепловая мощность, рассеиваемая такими регуляторами, поэтому они снабжались массивными радиаторами, по которым их легко было найти на материнской плате. При установке в материнскую плату процессора, потребляющего большую мощность, регулятор (а с ним и материнская плата) мог выйти из строя из-за перегрева. Поэтому в современных материнских платах применяется импульсный регулятор, содержащий сглаживающий фильтр низких частот, на который подается последовательность коротких импульсов полного напряжения.

Импульсный стабилизатор содержит реактивно-индуктивный LC-фильтр, на который короткими импульсами подается полное напряжение питания, и за счет инерции емкости и индуктивности выравнивается до требуемой величины, причем бесполезных потерь энергии практически не происходит. Стабильность напряжения поддерживается путем управления частотой и шириной импульсов (широтно-импульсная модуляция, ШИМ). При широтно-импульсной модуляции в качестве несущего колебания используется периодическая последовательность прямоугольных импульсов, а информационным параметром, связанным с дискретным модулирующим сигналом, является длительность этих импульсов. Периодическая последовательность прямоугольных импульсов одинаковой длительности имеет постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив импульсы через ФНЧ с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение.


Применение импульсных стабилизаторов позволяет значительно сократить тепловыделение, однако создает дополнительный источник помех, который может влиять на работу видео- и звуковых адаптеров.

За счет инерционности фильтра импульсы сглаживаются в требуемое постоянное напряжение. КПД такого преобразователя весьма высок, поэтому паразитного нагрева почти не происходит. Узнать импульсный регулятор напряжения на плате можно по катушкам индуктивности. Во всех новых платах применяется многоканальный (многофазный) преобразователь напряжения, который понижает напряжение питания до необходимых 0,8—1,7 В на ядре процессора (в зависимости от модели).

Трехканальный VRM на плате K8NS (Socket-939)

Трехканальный VRM на плате K8NS (Socket-939)

Таким образом, VRM – это по сути ШИМ-регулятор на микросхеме с преобразователями на MOSFET и фильтром. Как правило, напряжение на системной плате выше, чем на ядре процессора.

Традиционно основные регуляторы напряжения расположены вокруг процессорного разъема. Учитывая высокие значения потребляемых токов, они создаются многоканальными (многофазными). Обычно их число три-четыре, но на топовых платах их число может достигать 8. Отказ от одноканального питания снижает нагрузку на регулирующие транзисторы. С целью улучшения температурных режимов их работы, а также повышения надежности, силовые транзисторы нередко снабжаются средствами охлаждения (радиаторами).

В дополнение к многоканальному VRM, индивидуальными системами энергопитания снабжены цепи видеоадаптера и модулей оперативной памяти. Они обеспечивают необходимые уровни напряжений и токов, а также снижают взаимное влияние, передаваемое по силовым шинам.

Большое количество вентиляторов, сосредоточенных в небольшом объеме, создает сравнительно высокий уровень акустического шума. Уменьшить его можно специальным дизайном материнских плат, предусматривающим использование решений на основе тепловых трубок (heat pipe).

В качестве примера можно привести плату Gigabyte GA-965P-DQ6. На ней радиаторы, установленные на обеих микросхемах чипсета, соединены несколькими тепловыми трубками с радиаторами, установленными на силовых транзисторах VRM.

Такое решение обеспечивает эффективное перераспределение тепловых потоков между несколькими радиаторами. В результате выравниваются температуры элементов, работающих в ключевых режимах, являющихся источниками неравномерного нагрева, как в пространстве, так и во времени. Охлаждению же всей конструкции способствует общий дизайн, предусматривающий использование воздушных потоков, порождаемых вентиляторами процессора и кулера.

Оценивая эффективность данного решения, необходимо отметить, что еще одним фактором, способствующим уменьшению тепловой и электрической нагрузок на транзисторы VRM, является реализация большого количества каналов (фаз) питания. Например, в архитектуре указанной платы их двенадцать. Столь большое количество каналов существенно упрощает конструкцию VRM, улучшает развязку по линиям питания, уменьшает электрические помехи и увеличивает устойчивость работы компьютерных подсистем. Кроме того, описанная конструкция с пассивными кулерами, аналог которой активно используется, кстати, в бесшумных моделях видеоадаптеров этого же производителя, уменьшает акустический шум и от материнской платы.

Конструкция регулятора напряжения позволяет подавать на него 5 или 12 В (на выходе – напряжение питания процессора). В системе в основном используется напряжение 5 В, но многие компоненты в настоящее время переходят на 12 В, что связано с их энергопотреблением. Кроме того, напряжение 12 В используется, как правило, приводным электродвигателем, а все другие устройства потребляют напряжение 5 В. Величина напряжения, потребляемого VRM (5 или 12 В), зависит от параметров используемой системной платы или конструкции регулятора. Современные интегральные схемы регуляторов напряжения предназначены для работы при входном напряжении от 4 до 36 В, поэтому их конфигурация всецело зависит от разработчика системной платы.

Как правило, в системных платах, предназначенных для процессоров Pentium III и Athlon/Duron, использовались 5-вольтные регуляторы напряжения. В последние годы возникла тенденция к переходу на регуляторы, потребляющие напряжение 12 В. Это связано с тем, что использование более высокого напряжения позволяет значительно уменьшить текущую нагрузку. Например, если использовать тот же 65-ваттный процессор AMD Athlon с рабочей частотой 1 ГГц, можно получить несколько уровней нагрузки при различных величинах потребляемого напряжения

При использовании напряжения 12 В сила потребляемого тока достигает только 5,4 А или, с учетом 75% эффективности регулятора напряжения, 7,2 А. Таким образом, модификация схемы VRM системной платы, позволяющая использовать напряжение 12 В, представляется достаточно простой. К сожалению, стандартный блок питания ATX 2.03 содержит в основном силовом разъеме только один вывод +12 В. Дополнительный разъем вообще не содержит выводов +12 В, поэтому толку от него немного. Подача тока силой 8 А и более на системную плату, осуществляемая при напряжении +12 В через стандартный провод, может привести к повреждению разъема.

Для повышения энергообеспечения системных плат в Intel была создана новая спецификация блоков питания ATX12V. Результатом этого стал новый силовой разъем, предназначенный для подачи дополнительного напряжения +12 В на системную плату.

Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти и видеоадаптера – чаще всего другими. Это обеспечивает необходимые уровни напряжений и токов, отсутствие просадок по питанию, а также снижает взаимное влияние, передаваемое по силовым шинам.

Схемотехника стабилизаторов питания

Большинство схем построено именно по такому принципу, однако вместо второго транзистора может использоваться и диод. Внешне он похож на транзистор, только на нем (как правило) написано MOSPEC, а два крайних вывода замкнуты накоротко. Такая схема проще в исполнении, содержит меньше деталей, однако за счет падения на прядения на n-p переходе (

0,6 В) снижается КПД и увеличивается рассеиваемая тепловая мощность, то есть, попросту говоря, нагрев.

Микросхема VRM на платах Gigabyte

Микросхема VRM на платах Gigabyte


Дизайн подобных решений разработан и расписан в спецификации Intel DrMOS V4.0, которая описывает требования к драйверам по питанию Intel CPU.

Именно в этой спецификации приведены все основные типовые сигналы для такой микросхемы:

Basic Input-Output Signal Definition for a typical DrMOS

Basic Input-Output Signal Definition for a typical DrMOS

Теперь посмотрим на двухфазную схему питания DrMOS на примере платы MSI:

Применяемые микросхемы

У ASUS фирменная микросхема управления питанием называется EPU (Energy Processing Unit):

Контроллер EPU на платах ASUS

Контроллер EPU на платах ASUS

Из картинки выше понятно, что микросхема EPU не только генерирует правильное напряжение питания ядра процессора Vcore согласно сигналам VID, но также и общается с чипсетом по шине SM Bus, позволяя через управляющие сигналы такового генератора задавать частоту процессора согласно текущему профилю энергопотребления.

Типовая схема включения IR3550 выглядит следующим образом:

Сигналы микросхемы IR3550 Типовая схема включения IR3550


Если вам пробуется найти схему включения любой микросхему. то это легко сделать в интернете по названию микросхемы и слову datasheet.

VRM контроллер ISL6366

VRM контроллер ISL6366

Typical Application: 6-Phase Coupled-Inductor VR and 1-Phase VR 6+1 фаз питания платы ECS

По фото видно, что транзисторы здесь тоже упакованы в микросхемы, поэтому занимают очень мало место.


На данный момент выпускают 33 модели микросхем, поддерживающие спецификацию VRM 10.1 и только 5 микросхем с поддержкой стандарта VRM 11.0.:

Как видно, многие, но далеко не все из этих микросхем импульсных регуляторов имеют 4 фазы стабилизации.

Питание памяти

В окрестностях DIMM-слот быстро обнаруживается несколько ключевых транзисторов, электролитических конденсатора и всего одна микросхема с маркировкой LM 358. Такую микросхему производят все кому только не лень: Fairchild Semiconductor, Philips, ST Microelectronics, Texas Instruments, National Semiconductor и другие.

Генераторы тактовой частоты

Микросхема тактового генератора ICS и кварца

Микросхема тактового генератора ICS и кварца 14,318 МГц

Кварц сетевой карты Realtek Кварц контроллера USB 3.0

Выводы

Собственно, выход из строя ИМС ШИМ-контроллера VRM , выход из строя транзисторов преобразователя или вздутие (и как следствие потеря ёмкости) электролитических конденсаторов («бочек») в цепях питания VRM – это чаще всего встречающийся отказ материнских плат. Проявляется в виде того, что плата не стартует, не подавая признаков жизни или же стартует и выключается.

Применяемые в большинстве системных плат алюминиевые электролитические конденсаторы емкостью 1200 мкФ, 16 В или 1500 мкФ, 6,3 и 10 В обладают рядом недостатков, один из которых это высыхание по истечении времени. Следствием этого является потеря ими емкости, выход компонента из строя, появление аппаратных ошибок в цепях. Риск увеличивается при использовании подобных конденсаторов в тяжелых температурных условиях, например, в корпусе системного блока компьютера температура может доходить до 50-60° С.

Танталовые конденсаторы обладают большей надежностью, чем электролитические (нет эффекта высыхания), они более компактны и имеют меньшее значение параметра ESR, увеличивающее эффективность их применения в цепях фильтрации источников питания.

В последнее время вместо часто вздувающихся электролитических конденсаторов именитые производители плат стали использовать твердотельные конденсаторы. В схемах питания новой платы ASUS M3A79-T DELUXE на чипсете AMD 790FX используются высококачественные детали, в частности, транзисторы с низким сопротивлением в открытом состоянии ( RDS ( on )) для уменьшения потерь при переключении и снижения тепловыделения, дроссели с ферритовыми сердечниками, и, что очень важно, твердотельные полимерные конденсаторы от ведущих японских производителей (гарантийный срок службы модуля VRM – 5000 часов). Благодаря применению таких компонентов достигается максимальная эффективность энергопотребления, низкое тепловыделение и высокая стабильность работы системы. Это позволяет получить высокие результаты разгона и увеличить срок эксплуатации оборудования.

Твердотельные конденсаторы на плате MSI 880GMA-E45

Твердотельные конденсаторы на плате MSI 880GMA-E45

Такие же элементы используются например в материнской плате Gigabyte GA-P35T на чипсете P 35. Правда, и твердотельные конденсаторы взрываются, как правильно, в следствие повышенного напряжения или просто некачественных элементов (да, такое тоже встречается!):

Взорвавшиеся конденсаторы

Взорвавшиеся конденсаторы

VRM на обычных электролитических конденсаторах имеет MTBF всего около 3000 часов.

По возможности необходимо выбирать те материнские платы, которые используются 4-фазный импульсный регулятор. В цепях фильтра VRM предпочтительно должны стоять твердотельные, а не алюминиевые электролитические конденсаторы, дроссели должны иметь ферритовый сердечник. Кроме того, на грамотно спроектированной плате, конденсаторы фильтра не должны стоять вплотную к кулеру процессора и к дросселям, чтобы не происходило их перегрева.

В идеальном варианте, необходимо выбирать те платы, которые имеют отдельный независимый регулятор напряжения для CPU, памяти и шины видеокарты. В этом случае, вы сможете отдельно регулировать напряжение на каждом из компонентов, не вызывая роста напряжения на других!


[Посещений: 42 379, из них сегодня: 14]


Мосфеты — разновидность полевых транзисторов, очень полезная штука, если правильно его подобрать, подключить и использовать. Я их люблю применять в поделках. Маломощные в основном для экономичности потребления тока, мощные для коммутации амперных нагрузок и для силовых ключей в ШИМ- схемах и генераторах.

В отличие от простых биполярных транзисторов управляются они не током а напряжением. Управляющий электрод — затвор по сути является одним контактом простого неполярного конденсатора малой емкости.

В логических пятивольтовых схемах очень хорошо применять "логические" мосфеты — транзисторы, которые управляются напрямик с ножек микроконтроллера.

При подборе и выборе мощного мосфета нужно учитывать его основные параметры, это максимальное напряжение на его ножках, сопротивление между входом и выходом в открытом состоянии и напряжение на затворе, достаточное полностью открыть мосфет. Для логических мосфетов это напряжение в основном чуть ниже пяти вольт.

При подключении мощных нагрузок на первый план выступает проходное сопротивление сток — исток в открытом состоянии. Чем больше коммутируемый ток — тем важнее этот праметр. В даташитах этот параметр всегда на первой странице отдельной строкой.

Чем меньше этот параметр, тем меньше тепла будет выделяться мосфетом при работе. Даже небольшое изменение этого параметра приводит к большим разностям в выделении тепла.

Для примера я собрал тестовую схему:

Для замеров я использовал два мультиметра. Напряжение на затвор от нуля до максимума я подавал через проволочный многооборотный резистор СП5-3. Подопытным транзистором был 2SK3918.

Вот таблица замеров:

Данные конечно получились не совсем точные, но для общего сведения пойдет.
Пояснения:

GS — напряжение между затвором и минусом схемы, которое поступает с подстроечного резистора

DS — напряжение падения на транзисторе.

I — ток нагрузки — лампочки.

Далее применив Закон Ома вычислилась мощность W и сопротивление R. Вот это сопротивление и указывается в даташитах. Красным отмечена слишком большая мощность нагрева транзистора — мосфет полностью не открыт.

При использовании в качестве мощных ШИМ-ключей для регулировки яркости светодиодов и ламп нельзя задирать частоту импульсов высоко. Достаточно держать её чуть выше 50 Герц. Например така частота у штатных панелей приборов оптитрон и у штатных ДХО из ламп дальнего света " в пол накала" в тойотах. Если использовать более высокие частоты (килогерцы и выше) затвор мосфета начинает хорошо проводить ток и для раскачки его необходимо усложнять схему или использовать специальные драйверы.

Как показала практика мосфет 2SK3918 спокойно без радиатора в воздухе выдерживает 60-ти ватовую лампочку, оставаясь слегка теплым при напряжении на затворе в пять вольт. При подключении ШИМ генератора со скважностью 30-50% вообще холодный.


G-ЗАТВОР S-ИСТОК D-СТОК
мосфеты повсеместно используються как силовые транзисторы импульсных и линейных устройств стабилизаторов, регулирующие и переключающие устройства
в этой теме попробуем наглядно обьяснить
как проверить мосфет
как заменить и чем заменить
а так-же собрать минимум информации о аналогах и критичной замене, если получиться то и более


1. Kак проверить мосфет?
для того чтобы его правильно проверить нужно начать с замеров напряжений на них, для этого нужно знать какой мосфет за что отвечает, но замеры напруг это уже совсем другая тема
чтобы правильно проверить мосфет его нужно сначала выпаять либо отпаять ножки от платы, но делать это надо очень осторожно,так-как их просто можно выломать из корпуса
2. Как выпаять мосфет?
все это делают по разному, лично я термовоздушной станцией выпаиваю или нижним подогревом
если припой с свинцом то ставлю температуру300гр и как только припой поплывет снимаю пинцетом мосфет
с безсвинцовкой потяжелее , снимаю только нижним подогревом потому как боюсь перегреть сам транзистор
можно выпаять с помощью 2 паяльников, первым ватт на 60 разогреваем основу вторым отпаиваем ноги и им же снимаем мосфет
(лично я такой способ считаю лишней заморочкой), предлагают некоторые еще и такой вариант, разогрев ножки подсунуть под них кусочек лезвия, а потом отпаять основу
3. Выпаяли мосфет начинаем прозванивать
за образец возьмем наиболее распространенные мосфеты в корпусе ТО252аа или D2pak

1 ножка G-затвор, 2 ножка или основаD-сток,и3ножка S-исток
пример проверки покажу на обычном китайском мультиметре EM362



Сгорел мосфет в линейном стабилизаторе, как подобрать аналог?
Полевики в данном случае можно разделить на 2 группы, различающиеся нормированным напряжением VGS (ON) , и сопротивлением открытого канала RDS(ON).
Дело в том что управляющую схему на ОУ конструкторы по желанию могут запитывать от 12в источника как и от 5в.
Это значит что усилитель ошибки может управлять полевиком по затвору от 0 до 9-10в, или от 0 до 4,5-4.,8в..

Смотрим даташиты, и в некоторых видим нормированное RDS(ON) при различных VGS (ON).


Если схема управления 5 вольтовая, придется тщательнее подбирать транзистор, по даташитам сравнивая RDS(ON)&VGS (ON) обращая особое внимание на VGS (ON) = 2,5в(4.5в).и RDS(ON) при этом напряжении.
Сравнив с даташитом "погорельца" - подбираем по характеристикам не худшим чем было.
Можно подбором, но нужно учесть, что в уже работающей схеме на затворе должно быть не более 4в ( лучше меньше) , для обеспечения запаса регулировки.

Если она 12 вольтовая , то практически любой мосфет с донорской матплаты , (с не меньшим током) сможет работать в этом участке..

Как определить какая схема использована в данном участке.
Очень просто, без полевика, включив аппарат - измеряем относительно "земли" напряжение на точке завтора в плате.,схема усилителя ошибки будет стремится максимально увеличить напряжение на затворе, пытаясь открыть мосфет (которого нет.. ).
Если мы видим около 9-10в, значит схема 12-вольтовая, параметры подбора сужаются.
Если не более 5в то схема управления 5-вольтовая.

Сколько нужно фаз на материнской плате

Тщательно выбирая процессор по ядрам и гигагерцам, а комплект памяти — по таймингам и частоте, пользователи забывают о главном — платформе, которая должна обеспечить и гигагерцы процессора, и тайминги оперативной памяти. Поэтому уже на этапе выбора материнской платы многие допускают ошибку: боятся переплатить за «маркетинг». Но под красивым радиатором и разноцветными диодами подсветки часто скрываются важные аппаратные различия. Например, качество подсистемы питания материнской платы — то, о чем должен знать каждый владелец ПК.

Многие пользователи уделяют основное внимание выбору процессора или видеокарты, тогда как материнская плата покупается «на сдачу». Опытные сборщики знают: если плата подобрана неверно, то вскоре она отправится на перепродажу. При этом пользователь потеряет на сделке примерно столько же, сколько в свое время ему пришлось бы доплатить за качественную модель. В некоторых ситуациях юзеры, наоборот, излишне усердствуют с выбором платформы, и половина функций, за которые пришлось щедро доплатить, не используется до конца жизни компьютера. Это не только качественный звуковой чип и обвязка на японских конденсаторах или цифровое табло для POST-диагностики — в первую очередь это подсистема питания материнской платы, которая отвечает за жизнь процессора в системе.

Voltage Regulator Module

Подсистема питания или VRM — это электрическая цепь материнской платы, которая преобразует ток, поступающий из блока питания компьютера, и делает его пригодным для питания процессора. Процесс преобразования напряжения довольно сложен, о нем рассказывали в отдельном материале с подробными объяснениями и наглядными примерами.


В подготовке напряжения для ядер участвует несколько узлов: MOSFET-транзисторы, дроссели или фильтры тока, а также сглаживающие конденсаторы и драйверы. Связка из четырех таких компонентов называется фазой, каждая фаза работает синхронно с остальными. Как и другие электрические узлы, фазы совершают работу, поэтому их отдельные компоненты могут сильно нагреваться. Уровень нагрева фаз зависит от заводских пределов: чем выше запас прочности у мосфета, тем больше тока он может преобразовать без выхода за рамки температурных ограничений.


Мощность фаз измеряется в амперах. Например, популярные мосфеты в топовых материнских платах теоретически выдерживают силу тока до 50 А. Умножим это значение на условное напряжение 1.3 В и получим 65 Вт — теоретический максимум мощности, который можно получить с одной фазы. При этом не забываем о КПД и потерях в виде теплового излучения, которое выделяется в процессе преобразования. Получается, что одна фаза не может обеспечить достаточным питанием современный процессор для настольного компьютера, так как даже базовое энергопотребление чипов начинается с 65 Вт, что уже находится на уровне теоретического максимума для одного мосфета материнской платы.

По этой причине материнских плат с одной фазой для питания процессора не существует — как правило, даже самая бюджетная модель имеет в распоряжении минимум 3-4 фазы.

«8+2» не равно 10

Как правило, производитель материнской платы старается выставить напоказ только те функции устройства, которые понравятся пользователю. Например, рассказать о том, что в условной модели есть шесть или восемь добротных фаз в системе VRM. Однако при изучении подробных технических характеристик окажется, что в действительности материнская плата обладает всего четырьмя фазами, тогда как две остальных никак не относятся к качеству питания процессорных ядер. Обычно, это обозначается как «4+2» или «6+2».


Дело в том, что VRM материнской платы питает не только вычислительные ядра, но и остальные узлы процессора. Например, в материнской плате ASUS Maximus VIII Hero производитель установил всего десять фаз, которые устроены по принципу 8+2. Здесь только восемь фаз занимаются питанием процессорных ядер и контроллеров, а оставшиеся две фазы выделены под что-то еще. Что-то еще — это встроенное в процессор графическое ядро, которое, несмотря на невысокую производительность в играх, тоже требует качественного питания.

Многие пользователи, в том числе авторы материалов в сети, ошибаются, считая, что две дополнительные фазы используются для питания остального оборудования на материнской плате. На самом деле, в конструкции МП предусмотрено еще несколько VRM-зон, которые отвечают за формирование напряжения для оперативной памяти, PCIe-устройств и даже для RGB-подсветки.

Как определить количество фаз питания

Проще всего посчитать, сколько дросселей распаяно на материнской плате возле процессорного разъема. В новых материнских платах дроссели выглядят как квадратные компоненты довольно больших размеров, выстроенные в ряд вокруг сокета.


Но, как мы разобрались в предыдущем пункте, не все фазы используются для питания процессора. Количество дросселей указывает только на общее количество фаз материнской платы. В то же время, из условных восьми только шесть могут быть задействованы для питания ядер. В таком случае метод определения фаз «на глазок» не сработает.

Некоторые производители публикуют подробные данные о своей продукции, поэтому информацию о VRM платы можно узнать из технических характеристик на сайте. Если же там этой информации нет, можно обратиться к «помощи зала» — энтузиасты-обзорщики прощупали почти все модели материнских плат, в том числе, подробно разобрали их системы питания, контроллеры, наличие дополнительных фаз и других особенностей строения VRM. Поэтому подробную информацию о качестве питания можно найти практически в любом обзоре.

Мощный процессор — слабая материнка

Процессоры из разных линеек отличаются количеством ядер, тактовой частотой, а также максимальным энергопотреблением, которое регулируется заводскими лимитами, записанными в процессор на конвейере. Такая «стандартизация» позволяет производителям найти безопасный минимум для того, чтобы даже бюджетная модель платы смогла запустить и «переварить» самый мощный и прожорливый процессор.

Например, в линейке настольных процессоров Intel присутствуют модели с энергопотреблением от 65 Вт до 125 Вт. При определенных условиях эти значения могут повышаться вместе с частотой процессора, а также снижаться, если того требуют температурные ограничения. Так, на стандартных настройках BIOS восьмиядерный Core i9 11900K может потреблять до 125 Вт. При этом, если кулер справляется с охлаждением ядер, а радиатор VRM удерживает температуру мосфетов в допустимых пределах, производительность процессора может быть увеличена с помощью TurboBoost. Если же система питания справляется со 125-ваттным процессором на пределе возможностей, автоматика станет снижать частоту и вольтаж процессора до тех пор, пока силовая часть материнской платы не охладится до безопасных значений. Этот процесс называется троттлингом.


Конечно, бюджетная плата с четырьмя фазами под процессор кое-как будет работать в паре с десятиядерным монстром, но только до тех пор, пока пользователю не понадобится полная мощность процессора. Как только чип «расчехлит» все 16 потоков и достигнет рабочей тактовой частоты в процессе рендера или 3D-моделирования, подсистема питания материнской платы просто-напросто закипит. В таком случае придется скрестить пальцы на руках, ногах и даже на лапах кота — крупно повезет, если автоматика вовремя включит троттлинг и не позволит VRM взорваться от перегрева. Чаще случается другое — после нескольких таких «прогревов» мосфеты вылетают с искрами и дымом.


Чтобы исключить такие ситуации, нужно сразу выбирать комплектующие, которые соответствуют друг другу хотя бы по параметрам питания. Для этого необходимо понимать, какому процессору будет достаточно четырех фаз, а какому мало и десяти.

Сколько вешать в фазах?

Чипы Intel делятся на несколько семейств — это ультрабюджетные Celeron, бюджетные офисные Pentium и высокопроизводительные Core. У AMD в этом плане все немного проще: актуальные бюджетные и флагманские чипы выпускаются только под флагами Athlon и Ryzen.

Celeron, Pentium и Athlon — это бюджетные модели процессоров, которые изначально рассчитаны на работу с любой материнской платой и любой системой питания. От них не стоит ожидать запредельной производительности, а значит, не будет высокого энергопотребления и нагрева. Поэтому мы разберем только линейки Core и Ryzen, которые, в свою очередь, делятся на несколько подкатегорий: Core i3, Core i5, Core i7 и Core i9 у Intel, а также Ryzen 3, Ryzen 5, Ryzen 7 и Ryzen 9 у AMD.


Каждый год производители обновляют процессоры и добавляют новым чипам порядковые цифровые имена — был Core i5 8600K, стал 9600K, а после 10600K и 11600K. Вместе с каждым обновлением линейки возрастает производительность чипов, при этом их энергопотребление остается прежним. Например, чип Intel Core i5 11400 потребляет 65 Вт, как и его предшественники — 9400, 8400, 7400. То же самое относится к моделям старших и младших линеек.

Это относится не только к процессорам «синего» лагеря, но и к чипам AMD. Если сравнить шестиядерные процессоры Ryzen 5 первого и третьего поколений, то их энергопотребление также совпадет. Зато разница в производительности между ними окажется настоящей пропастью.


Поэтому для настольных процессоров обоих производителей можно выразить зависимость энергопотребления чипов и фаз питания, необходимых для стабильной работы, в универсальной таблице. Например, так это будет выглядеть в случае, если пользователь собирает систему на Intel.


Значения в таблицы приведены с запасом прочности. Никто не спорит, что шестиядерный или восьмиядерный чип можно заставить существовать и на четырех фазах. Правда, о надежности такой сборки можно забыть.

Похожую таблицу можно составить и для процессоров AMD:


«Разгони меня полностью»

Перечисленные рекомендации действительны только в том случае, если пользователь не занимается разгоном процессора или оперативной памяти. Если же система нуждается в процессоре с разблокированным множителем, то о бюджетных материнских платах и даже моделях среднего ценового сегмента можно забыть.

Оверклокинг — это превышение заводских пределов и лимитов как процессора, так и материнской платы, ее VRM и контроллеров питания. В этом случае улетучивается «волшебство» автоматики, которая защищает компоненты от перегрева и выхода из строя, и пользователь остается один на один с гарантией на технику и ее сроком службы. Это касается не только процессоров Intel с литерой «К» в названии, но также и процессоров AMD Ryzen, которые вообще не имеют ограничений на разгон. В этом деле работает только одно правило — чем больше, тем лучше.


Для ориентира — подходящая и надежная система питания для разгона процессоров есть у таких моделей материнских плат, как Asus Maximus, MSI MEG, AsRock Taichi, Gigabyte AORUS.

Как не ошибиться с выбором

Выбор комплектующих — это война «жаб» и «хотелок». Пользователю всегда хочется выбрать что-нибудь получше, но здравый смысл и худеющий кошелек возвращают размечтавшегося оверклокера на место, заставляя присмотреть компоненты попроще и доступнее. Но не стоит кидаться из крайности в крайность. Даже в средней ценовой категории можно найти достойную материнскую плату, которая не только переварит мощный восьмиядерник в «домашнем» разгоне, но и будет стабильно работать с оперативной памятью на частоте до 4500 МГц.

При этом она не будет кипеть и троттлить — достаточно обратить внимание хотя бы на общее количество фаз. Если их уже десять, то велика вероятность, что процессору достанутся восемь полноценных линий, а этого уже достаточно даже для 10 мощных ядер. Конечно, важно учитывать и качество охлаждения: даже десять фаз могут оказаться бесполезными в долгосрочной нагрузке, если у них нет пассивного отвода тепла. Поэтому лучше отдать предпочтение той модели, для которой производитель не пожалел несколько лишних граммов алюминия.

Читайте также: