Разгон процессора amd sempron

Обновлено: 02.07.2024

Если в целом посмотреть на уровень тепловыделения процессоров семейства Athlon64 (Socket754 и Socket939), то нетрудно заметить, что этот показатель находится в вполне разумных пределах. А если пользователь системы использует технологию Cool'n'Quiet, то уровень тепловыделения снижается очень резко. Напомню, что включение Cool'n'Quiet приводит к снижению тактовой частоты и напряжения в то время, когда процессор не находится под нагрузкой (5% загрузки). Причем с ростом нагрузки на процессор, его частота (а следовательно и производительность) увеличивается ступенчато. И только при полной нагрузке на процессор, его тактовая частота и напряжение достигают своих штатных значений. Впрочем, еще раз повторюсь - даже если не активировать Cool'n'Quiet, уровень тепловыделения процессоров Athlon64 (и тем более Sempron) не доставляет никаких неудобств пользователю (речь идет о повышенной нагрузке на блок питания, модуль питания материнской платы, уровень шума процессорного кулера, и наконец различные виды trottling-а).

Кстати, для активации технологии Cool'n'Quiet необходимы 3 компонента: поддержка этой технологии со стороны материнской платыбиоса, наличие установленного "драйвера процессора" (файл

3Мб c сайта AMD), и поддержка со стороны операционной системы (для Windows XP, в свойствах энергосбережения необходимо установить параметр "Минимальное энергопотребление".

Хорошая технологическая база и невысокие значения тепловыделения создают неплохую основу для разгона процессоров Athlon64 и Sempron. Стоит отметить, что алгоритм разгона процессоров Sempron, ничем не отличается от разгона процессоров Athlon64 (поскольку, концептуально, это абсолютно одинаковые процессоры). Итак, поскольку множитель процессора заблокирован в сторону увеличения (компания AMD не приветствует разгон и оверклокеров), мы можем только увеличивать частоту шину HTT (тактовая частота процессора = множитель * частоту HTT). Поскольку, частота работы оперативной памяти напрямую связана с частотой процессора (через делитель), при разгоне наступает такой момент, когда память не способна стабильно работать на заданных частотах. В этом случае, если планируется дальнейший серьезный разгон, следует изменить делитель частоты памяти (производители материнских плат, для упрощения, приводят не реальные значения делителей, а всем понятные "DDR200" - "DDR400").


bios

Если же стоит задача просто достигнуть стабильности работы на заданных параметрах, то можно либо повысить тайминги памяти, либо увеличить напряжение на памяти (Vmem).

При достижении частоты HTT

250Мгц и выше, система может потерять стабильность работы. Дело в том, что при увеличении опорной частоты HTT для сохранения стабильности работы, результирующая частота HT должна быть в районе 1Ггц. В результате при увеличении FSB до 250Мгерц мы вынуждены снизить множитель HT до 4 (при установке FSB в районе 300Мгерц, множитель = 3). Этот тонкий момент многие пользователи не учитывают, и сталкиваются с проблемами при разгоне.


bios

Отметим, что некоторые материнские платы умеют самостоятельно изменять множитель шины HT, что облегчает процедуру разгона.

Наконец, при достижении частот процессора близких к технологическому пределу может потребоваться увеличение напряжения на процессоре (Vcore). Также, в отдельных случаях, более высоких результатов разгона помогает добиться повышение напряжения на чипсете (Vdd).

Итак, переходим от теории к практике. Первый процессор - 2600+, был разогнан с штатной частоты 1.6Ггц до частоты 2.1Ггц.

При этом, даже серьезное увеличение напряжения питания не позволило улучшить результаты разгона.

Следующий процессор - Sempron 3100+, с штатной частотой 1.8Ггц. И несмотря на то, что он выпущен по устаревшему 0.13мкм техпроцессу, результаты разгона оказались впечатляющими: стабильная работа на частоте 2.575Ггц.

Еще лучшие результаты в области разгона продемонстрировал процессор Sempron 3300+. Его штатная частота равна 2.0Ггц, а нам удалось "завести" его на частоту 2.8Ггц !

А вот последний процессор - Sempron 3400+ сильно разочарован. Несмотря на самый свежий степпинг ядра Palermo, он не смог осилить частоту 2.7Ггц, и работал стабильно на частотах не выше 2.66Ггц.

Впрочем, нужно помнить о том, что все процессоры (даже одной модели на одном степпинге) имеют разный разгонный потенциал. Вполне возможно, что нам бы попался процессор Sempron 3400+ работающий стабильно на 2.8Ггц, а другой процессор 3300+ сбоил бы на 2.5Ггц. Впрочем, такого большого разброса по максимальным частотам не бывает. Как правило основная масса процессоров имеет одинаковый частотный потолок, и только небольшая часть его превышает (такие процессоры называют "удачными" :). А неудачных процессоров еще меньше - благодаря тому, что технологический процесс изготовления процессоров AMD довольно хорошо отлажен.

В заключении хочу напомнить, что для достижения высоких результатов разгона, все используемые комплектующие должны быть качественными и проверенными. Прежде всего это касается блока питания и материнской платы. Что касается оперативной памяти, то высокого разгона процессора можно добиться и с помощью дешевых модулей. Но прирост производительности (а именно для этого занимаются разгоном) в этом случае будет минимальный. Более дорогая память, позволяет гораздо реже понижать свою частоту, а некоторые модули вообще позволяют этого не делать (в обзоре модулей OCZ PC3200 400512ELDCPER2-K Platinum rev2.0 и Patriot XBL мы отметили их способность работать на частотах

300Мгц, что соответствует DDR600 !).

Охлаждение процессоров - отдельная тема для разговора. Но кратко хочу сказать следующее: если частоты до 3Ггц вас устраивают, то можно ограничиться качественным воздушным охлаждением. Если вы планируете разогнать процессор до 3Ггц и выше, то во-первых необходимо долго и тщательно выбрать процессор, а во-вторых установить жидкостную (или более эффективную) систему охлаждения.


Вы можете задать вопрос почему я написал эту статью ? Ответ простой ,я занимаюсь ремонтом компьютер и не все могут купить супер навороченный компьютер,а вот поиграть в игры хочется многим. Поэтому я и решил написать эту статью. Так , сколько же можно получить производительности из AMD Sempron 3100 +? Я отправился на поиски ответа на этот вопрос. Разгон это блаженство — но не без некоторых оговорок.
Моя любимая часть работы с любым новым процессором — разгон. Это еще причина,почему я делаю почти всегда обновления. Для этого, я вернусь к золотому дню первых процессоров Celeron . Дешевые,но по частоте ужасно ниже своего потенциала, они были драгоценными во всех странах. Даже с меньшим кэшем на борту (первые процессоры были вообще без кэша), если вы сможете заставить работать их , вы можете получить неплохую производительность процессоров Pentium . Как видно из моей статьи процессор Sempron 3100 +, в большинстве приложений процессор блестяще справлялся с работой часами. Теперь, давайте посмотрим, как далеко мы можем заставить его работать(я имею ввиду по времени).

Глядя на фондовые процессорные спецификации, две вещи,которые выскочили. Одной из них является напряжение данного процессора. Другая вещь — множитель (который может быть скорректирован вниз, а не вверх). Питание процессора — стандарт на 1,4V. Это отличается от 1.5V найденного на их коллеге Athlon64 . Обычно это указывает на низкое напряжение для увеличения разгонного потенциала, но в данном случае я думаю, что это больше случай, а не начальная тактовая частота чипа.

Что касается последнего процессора, он создает то, что можно рассматривать как положительный или отрицательный потенциал. Для того чтобы получить максимальную скорость от чипа, частота шины HyperTransport, из которой получается частота процессора , должна быть достаточно высокой. В отличие от некоторых других членов в ряде A64/FX, либо очень высокая память способная работать почти до 300 МГц или будет необходимо использование разделителей. В моем случае,частота около 240 МГц и является той,на что мой BH5 способен, на основе Kingston HyperX 3000 . Таким образом, всё ,про что я написал выше, мне придется выйти за эти пределы. Это не оптимальное решение, а жёсткие временные нагрузки ,которые должны компенсировать низкую пропускную способность и будет асинхронным в большинстве приложений. Это то, что вы должны иметь в виду, если вы нацелены на соотношении 1:1,и знать, что самый большой объем памяти будет серьезным узким местом с этим низким множителем.

Начиная с DFI , есть более справедливая доля вариантов разгона. Для целей настоящей статьи, я буду придерживаться только широко доступных комплектующих. Продувка системы — первые пара шагов HTT и не было никаких проблем.Материнская п лата и процессор комбо — не было проблем вплоть до 240 МГц HTT, что в общей сложности дало 2160MHz.

На данный момент то, что я планировал и произошло. На материнской плате DFI LanpartyUT nF3-250Gb, два порта SATA страдают от тех же проблем, которые есть на многих A64 платах, в том, что делитель не работает должным образом на высокой HTT. После включения моего RAID-массива в порты 3 и 4, однако, он вернулся в режим. Делитель памяти был увеличена до CPU/11 вместо фондового процессорного / 9, так как известный предел частоты для моего KHX приблизился,я чувствовал процессору ещё можно больше дать разгон.

Добавление тире, когда нестабильность напряжения поднимает свою планку в Prime95, увеличение HTT шли на 288MHz. На данный момент, даже с 1,85 в чипе , будет работать не с абсолютной стабильностью. Возможно, поставив мораторий на чипе от VapoChill или Prometia будет иметь значение. Это было сделано только с одной планкой памяти 512 KHX, добавление второй планки, вызвало ошибки в Windows. Резервное HTT с частотой до 285, и опуская вниз делитель памяти еще на один шаг CPU/12 устарняет ошибки. В некоторых расширенных настройках, я надеюсь заставить процессор принять оба модуля в CPU/11, но это займет время.


Итак, как же сделать дополнительные 800 МГц для чипа? Увеличение тактовой частоты до 45% и доведя его скорости до FX-55,не повредит ему, это точно. Это самая высокая скорость у розничных процессоров для продажи, и она больше,в настоящее время это самая высокая частота которую я видел достижимой для разгона, не прибегая к крайним мерам. И так на любом старом процессоре 130 нм. Sempron 3100 + построен на 90-нм.

Тестирование: Решение — Adobe After Effects , STARS CFD

  • AMD Sempron 3100 +
  • AMD Athlon 64 3200 +
  • DFI Lanparty nF3-250Gb
  • Kingston Hyper X 3000 (2 * 512)
  • Hitachi 7K250 2x80GB HD в 64 тыс. полос RAID 0 (NVidia встроенный контроллер)
  • Radeon 8500 LE

В данной статье я сделал тестирование ,с тестовым набором задач в зависимости от мощности процессора:

  • Adobe After Effects
  • Звезды CFD Solver
  • Super Pi
  • Unreal Tournament 2K3
  • LAME MP3 кодирование
  • DivX

Adobe After Effects


Есть две части этого теста. Первый — расчёт в основном на базе процессора, а второй — на какую систему он более ориентирован. Разогнанный Sempron абсолютно убивает в этом тесте. Время-деньги, так и в профессиональных приложениях, где рабочий процесс получения сделан как можно быстрее, очень важно, тактовая частота имеет значение. Первый тест показывает полное соотношение 1:1 — для каждого % который добавляется к тактовой частоте, время падает на тот же объем. Во втором тесте меньше зависимости от мощности процессора, но это все ещё ​​довольно заметный разрыв.

STARS CFD


Этот тест, предусмотренный лабораторией Oklahoma State University, является отличным инструментом представляющим общий вычислительный гидродинамический симулятор. Этот тест, также является примером чистой плавающей точкой математической способности. После всего, что дополнительные частоты добавили сверху, Sempron, наконец,смог конкурировать с A64 3200 + , на его нормальной 2 ГГц способности (

195s). Это занимает довольно много дополнительных усилий в этом приложении, чтобы компенсировать кэш дифференциала. FX-55 будет наводить порядок , учитывая его 1 Мб кэш-памяти, а также скорость 2,6 часа.

Super Pi, Unreal Tournament


Это тест, показывает, какие настройки можно вычислить за один миллион цифр чисел пи быстрее. Опять же, здесь правит тактовая частота, больше ничего.

Unreal Tournament 2003


В играх, A64 имеет небольшее преимущество над своими меньшими братьями. Но если разогнать Sempron 3100 +, это преимущество исчезает . Тест Botmatch, очевидно, показывает большую зависимость от мощности процессора, имея для расчета AI и физику ботов. Прирост в тесте меньше по изменению возможностей процессора.

LAME, DivX


Вторым тестом ,будет медиа-ориентированные MP3 преобразования,используя DBPoweramp интерфейс. Диск был впервые преобразован в WAV формате HD, так что компакт-диск не будет ограничивающим фактором. Кроме того,можно достичь большей коррекции ошибок от диска с помощью этого метода. Дополнительные 800 МГц дают о себе знать здесь, сбивая всё до 100 секунд. Это на 40% выше по сравнению с почти эквивалентным нашим 44% увеличением тактовой частоты.

DivX


Используем последний тест — два прохода, два CD рипа : было сделано The Movie . Опять же, как и первый тест в After Effects, скорость процессора является доминирующим фактором в работе. Как показали проходы ,результаты около 1:01 и зависят от тактовой частоты процессора. На самом деле, второй проход шёл на таком фантастическом клипе, что мой RAID 0 массив начал проявлять признаки деформации . Вот это впечатляет.

Заключение

Итак, что же я должен сказать? При адекватной температуре от моего медного водоблока и передачи тепла в масляный радиатор,процессор удалось разогнать до скорости топ чипов AMD. Даже добавление в стоимость всей моей установки охлаждения воды, она по-прежнему дешевле, чем покупать FX-55 в первую очередь. Я могу предположить, что этот процессор является одной из главных причин, почему DFI сделала материнские платы для оверклокеров под Socket 754 заменив на сокет Socket 939.

Плюсы

  • Дешевые, с переходом на 90 нм
  • Высочайшая производительность с низким чип классом (в большинстве приложений)

Минусы

  • Получение работы без ошибок на двух двухсторонних модулях DIMM на высокой скорости (как память и процессор) трудно,и граничат с невозможным
  • Отсутствие кэш-памяти L2 это плохо для некоторых приложениях
  • Нужен разгон памяти,что бы по-настоящему воспользоваться преимуществами доступной полосы пропускания 1:01

Спасибо, что дочитали мою статью до конца.Надеюсь она была вам полезной.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

га новый пока денег нету(просто новый проц-новая мать, новая память)

Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.

То есть загоним старую лошадь в мыло, а новую купим в следующем веке. А зачем.

Приглашаем 30 ноября всех желающих посетить вебинар о литиевых источниках тока Fanso (EVE). Вы узнаете об особенностях использования литиевых источников питания и о том, как на них влияют режим работы и условия эксплуатации. Мы расскажем, какие параметры важно учитывать при выборе литиевого ХИТ, рассмотрим «подводные камни», с которыми можно столкнуться при неправильном выборе, разберем, как правильно проводить тесты, чтобы убедиться в надежности конечного решения. Вы сможете задать вопросы представителям производителя, которые будут участвовать в вебинаре

Последний раз редактировалось хоттабыч Вт авг 31, 2010 18:57:42, всего редактировалось 1 раз.

Короч решил разогнать, разогнал до 2250 мгц, один раз был глюк, но сейчас всё работает. Поставил в биосе память 133мегагерца(ддр сдрам), как я понял частота памяти растёт вместе с прциком. поставил аш два вентилятора, радик штатный, вроде всё в поряде, больше 40 без нагрузки не греется(хотя кул энд кьюет включен), если нагрузка 100% м- максимум 45 градусов. Хто гнал этот процик, скажите насколько сильно его можно стабильно гнать?

_________________
Спасибо за внимание.


скажите насколько сильно его можно стабильно гнать?
скажите насколько сильно его можно стабильно гнать?
Ну так сам и выясни Разгоняй и потом долго(не менее 30мин., завершающий этам - чем дольше, тем лучше) проверяй через LinX или S&M. Как начнутся "чудеса"(зависания, ребуты) - откатывай на последний рабочий режим и считай что так нормально. А вообще для разгонов нужно кулер менять на хороший, большой и медный. 3 раз спрошу(так и не ответили): какой СМЫСЛ разгонять процессор? То есть - какая выгода? Только не надо теории(я не тупой), какая практическая выгода? А фиг знает Мне возможностей своего железа тоже хватает
Когда перестанет хватать-буду планировать поход в магазин за новым Обновляться планирую года через два,не раньше,к тому времени,дай Бог,у Интела утрясётся неразбериха с сокетами.Железо не гнал и не собираюсь-предпочитаю иметь безглючную систему,ради этого лучше переплачу денег за соответствующий компонент,нежели буду покупать и разгонять более слабый Мне лично кажется(может и не прав), более важно иметь более емкую ОЗУ и большую емкость жесткого диска. Именно ОЗУ из за нехватки пространства заставляет тормозить и виснуть процессор. А также важна организованность процесса запоминания: ныне как организовано? всякое изменение на экране(допустим) заставляет перезапоминать всю картину целиком, а не ту мелкую деталь, которая претерпела своё изменение, а это относительно долгий процесс.(сравним: Вы на чертеже стерли линию и нарисовали другую или - целиком перерисовали весь чертёж - разница есть?) Вот процессор компа и работает по второму варианту(как мне кажется).

Ну как, работает быстрее. Правда, если гонится, к примеру на 30%, то это не значит что и работать на столько же быстрее будет.

Насчет стабильности - смотря как разгонять. Если по уму, то сбоев не будет.
А вообще, это как спортивный интерес - кто-то купит новый, мощный процессор/видеокарту и сразу же разгонит, а кто-то оставит как есть и даже не подумает.

к тому времени,дай Бог,у Интела утрясётся неразбериха с сокетами. Так уже утряслось. Вся линейка Core на виду. Через два года снова новый сокет придумают

_________________
() Паяю только медным жалом.
_/\_ . . А не вступить ли мне в секту любителей "TS100"?

долго гонял разными тестами. Не больше 50 градусов тем-ра. Но крахи начинаются после 2 ггц. Думаю из-за оперативы. Как его больше разогнать? вернее можно ли как-нить снизить частоту оперативы(была 200мгц, ща больше.)?
Хотя ладно 2 ггц хватит.
To Brigadir:
скорость работы компа.
Ща работает заметно быстрее при большой нагрузке. при небольшой оссобого увеличения нет.

upd:
дело в шине(280мгц) видать нельзя больше

Оперативка - ставятся жетско тайминги, ставится мин. частота, и проц гонится пока стабилен. Поднимается напряжение на ядре до максимума (1.45В).
Потом - поднимается частота памяти, со все так же жестко зафиксированными таймингами.
Потолок ядра - где-то 2.2ГГц обычно на таких процах. 2.2? а яд думал 3 поставлю, когда охлаждение будет норм( биосе можно 3,2 поставить), только множик менять нельзя, можно частоту гена(сейчас 250мгц), множик 8. Напругу менять нельзя. а что с таймингами? TRCD, TRAS, TRP, поставил на максимум(на каком-то сайте порекомендовали), хотя недопонимаю этого.
частоту памяти сделал 133 мгц(мин), максимально можно 200 поставить. Память вроде не греется. Насколько я понял, ещё дело в FSB, но его менять никак нельзя .

Ну-ну. Вы хоть один проц на сокет 754 видели на 3 ГГц? К 3 ГГц АМД подобралась эдак в году 2007, и первые атлоны 6000+ грелись как печки и жрали 125Вт. Потому - можете мечтать дальше
Или вы думаете, в АМД сидят дураки, которые специально не выпускали на рынок 3 года процы, способные стабильно работать на 3 ГГц?

а что с таймингами? TRCD, TRAS, TRP, поставил на максимум(на каком-то сайте порекомендовали), хотя недопонимаю этого.

Ну и смысла, если при этом производительность подсистемы памяти упала ниже плинтуса?
Почитайте вначале о таймингах что ли. Что это такое, с чем его едят, и что дает повышение/понижение.

Он работает на тех же 1800 МГц, что и Sempron 3000+ и Athlon 3000+ под этот разъем. Так как процессоры Sempron Socket 939 обладают двухканальным контроллером памяти, а также поддержкой технологии Cool’n’Quiet, то отличия между перечисленными процессорами – только в количестве кэш-памяти второго уровня. У Sempron 3000+ ее всего 128 кб, у 3200+ - 256 кб, у Athlon 3000+ - 512кб. Что касается цен, то Sempron 3200+ находится гораздо ближе к Sempron 3000+, чем к Athlon 3000+. Возникает вопрос – если в магазине оказались в наличии Sempron 3200+, есть ли смысл покупать более дорогой Athlon, стоят ли дополнительные 256 кб кэша разницы в цене на эти процессоры? В этом обзоре мы попробуем ответить на этот вопрос, проведя сравнение скорости этих процессоров, а также выясним, хорошо ли разгоняются Sempron 3200+?

Для тестов удалось получить три экземпляра этих процессоров. В идеале, для подобных обзоров надо подбирать процессоры с разной маркировкой, но, к сожалению, в данном случае этого сделать не удалось - все три процессора были выпущены на одной и той же десятой неделе этого года, и отличаются последними цифрами серийного номера:

SDA3200DI03BW
NBBWE0610DPMW
Z909467C6****




Известно, что процессоры, выпущенные на разных неделях, и/или имеющие разную маркировку, могут разгоняться по-разному, но, забегая немного вперед, скажем, что, судя по результатам проверки, даже процессоры с одинаковой маркировкой могут обладать разным разгонным потенциалом.

Кроме недели и года выпуска по маркировке можно также определить, что процессоры принадлежат к степпингу E6 (две последние буквы верхней строки), то есть обладают улучшенным контроллером памяти и поддержкой SSE3 (которая появилась еще в степпинге Е3). Об этом же сообщает утилита CPU-Z:


Теперь перейдем непосредственно к разгону этих процессоров. Разгон и тестирование проводились на следующей системе:

Материнская плата – ABIT AN8 Ultra (nForce 4 Ultra)
Кулер – Thermaltake Big Typhoon
Термопаста – КПТ-8
Оперативная память – 2*512Mb Kingston VR PC3200
Видеокарта – Gigabyte GeForce 6600GT 128Mb
Винчестер - Samsung SpinPoint SP2504C 250Gb
Блок питания –Chieftec HPC 420-302DF 420W

Для того чтобы ничего не ограничивало разгон процессора, делитель частоты шины HyperTransport был установлен на 3х, а делитель частоты памяти на 133МГц. Проверка стабильности работы процессоров проводилась так: сначала запускался тест Super Pi mod 1.4, рассчитывалось число Пи с точностью до 1 миллиона знаков (проще говоря, 1М), если этот предварительный тест проходил, на 17 минут запускалась программа SnM со 100% нагрузкой, если и этот тест заканчивался успешно, то заново запускался Super Pi, на этот раз с точностью до 32 миллионов знаков (32М). Обычно, если эти тесты успешно завершаются, то процессор на такой частоте будет стабилен и в других приложениях.

Для начала надо выяснить, на какой частоте способны работать процессоры без поднятия напряжения? В качестве ориентира была выбрана частота 2500 МГц (278*9). Первый процессор отлично справился с этой задачей, второй также, а вот третий на такой частоте стабильно работать не захотел - его максимальная стабильная частота при 1,4 В составила 2448 МГц (272*9). Так как первые два процессора без проблем функционировали на 2500МГц, следующим ориентиром были выбраны 2600 МГц, но, к сожалению, ни один из них так и не смог покорить эту частоту при стандартных 1,4 В. Результаты составили 2556 МГц (284*9) и 2574 МГц (286*9) для первого и второго экземпляров.


В итоге разница между лучшим и худшим из процессоров составила 126 МГц. Не так уж мало, но надо сказать, что даже частота, достигнутая худшим процессором, 2448 МГц, является неплохим достижением при стандартном напряжении. А 2574 МГц у второго процессора можно назвать пусть и не выдающимся, но все же очень хорошим результатом.

Теперь проверим, как поведут себя процессоры при повышении напряжения до 1,6 В? Новой целью является стабильная работа на частоте 2700 МГц (300*9). Как и в первом случае, два процессора блестяще справились с этой задачей, а вот третий опять подкачал, не дотянув до желанной цифры всего 45МГц – его итоговая частота составила 2655 МГц (295*9). На этом этапе проверку третьего процессора решено было закончить, так как с ним было все ясно – средний разгон, не более того. А вот два других процессора интереснее – может, при таком напряжении они смогут работать на частоте 2800МГц? И опять повторилась та же история, что и с 2600МГц без поднятия напряжения – частота 2800 МГц осталась непокоренной. Первый процессор стабильно работал на 2754 МГц (306*9), а второй – на 2772 МГц (308*9). Причем разница между ними была такой же, как и без поднятия напряжения – 18 МГц, а между лучшим и худшим процессорами чуть меньше – 117МГц.


Итак, два процессора показали очень хорошие результаты разгона при 1,6 В! Но желание достичь 2800 МГц не давало покоя и было решено провести последнюю проверку – при напряжении 1,65 В. Тут “сошел с дистанции” первый процессор – на частоте 2800 МГц (311*9) он работал нестабильно, Super Pi 1M проходил нормально, но SnM выдавал ошибку. Вся надежда осталась на второй процессор, он ведь недотянул до этой частоты всего 28МГц! И действительно, на 2800 МГц он порадовал стабильной работой, для окончательной проверки в данном случае кроме Super Pi и SnM был запущен 15-кратный прогон 3Dmark05, так как этот тест (а особенно его CPU-тесты) довольно-таки чувствителен к переразгону процессора. Попытка выжать еще больше из этого процессора к успеху не привела – на чуть большей частоте, 2817МГц (313*9) система была нестабильна.


Здесь необходимо упомянуть то, что в таком отличном разгоне процессора немаловажную роль сыграл кулер Thermaltake Big Typhoon, он очень хорошо справился со своими обязанностями – температура процессора при 2800МГц и 1,65В под SnM не превышала 56 градусов, при комнатных 25. Не забывайте, что если вы хотите добиться хорошего разгона, вам для этого необходим не только удачный экземпляр процессора, но и высокоэффективный кулер.


А вот теперь действительно можно переходить к сравнению скорости Sempron 3200+ и Athlon 3000+ :). Так как Athlon 3000+, который принимал участие в тестах, разгоном до 2800МГц похвастать не мог, тесты проводились на частоте, на которой он стабильно работал – при 2655МГц (295*9). Память при этом работала на частоте 242МГц с таймингами 3-3-3-5 1Т. Чтобы игровые тесты не сильно упирались в скорость видеокарты, она была разогнана до частот 600/1200, а ее настройки в драйвере установлены на максимальную производительность, сглаживание и анизотропная фильтрация отключены. Так как во всех тестах получилась одинаковая картина, нет смысла останавливаться на каком-либо из них в отдельности, просто посмотрим на результаты и затем сделаем выводы:














Как и следовало ожидать, вдвое больший кэш позволяет Athlon 64 3000+ лидировать во всех тестах, но посмотрите на разницу в скорости - она минимальна! Учитывая то, что на момент написания обзора Sempron 3200+ стоил примерно на 15-20 долларов дешевле, чем Athlon 3000+, вызывает сомнения как смысл покупки более дорогого Athlon, так и смысл покупки системы на базе Sempron 3000+ и выше под Socket 754. Естественно, AMD нет смысла официально продавать в розницу процессоры Sempron под Socket 939, так как они поставят под угрозу продажи как Athlon 3000+, так и некоторых процессоров под Socket 754.

Вывод из всего этого можно сделать такой – у AMD получился отличный процессор, предлагающий очень хорошее сочетание цена/производительность. Так же, не надо забывать про разгонный потенциал этих процессоров, они легко позволяют добавить к номинальной частоте еще 900 или даже 1000 МГц. Конечно, процессоры Athlon обладают таким же частотным потенциалом, но когда идет речь о покупке бюджетного процессора, экономия 15-20 $ будет не лишней. Так что, если вы хотите купить себе недорогой процессор под Socket 939, то лучшим вариантом будет не гнаться за 512кб кэш-памяти, а поискать недорогой Sempron 3200+, у которого кэш меньшего размера можно компенсировать разгоном. ;)

Разгон процессора AMD

Компания AMD производит процессоры с широкими возможностями для апгрейда. На самом деле ЦП от данного производителя работают всего на 50-70% от своих реальных мощностей. Делается это для того, чтобы процессор прослужил как можно дольше и не перегревался в ходе работы на устройствах с плохой системой охлаждения.

Но перед тем, как выполнять разгон рекомендуется проверить температуру, т.к. слишком высокие показатели могут привести к поломке компьютера или его некорректной работе.

Имеющиеся способы разгона

Есть два основных способа, которые позволят увеличить тактовую частоту ЦП и ускорить обработку данных компьютером:

  • При помощи специального ПО. Рекомендуется для не самых опытных пользователей. Разработкой и поддержкой занимается сама AMD. В данном случае вы можете видеть все изменения сразу же в интерфейсе ПО и в быстродействии системы. Главный недостаток данного способа: есть определённая вероятность, что изменения не будут применены.
  • С помощью БИОС. Лучше подходит более продвинутым пользователям, т.к. все изменения, которые вносятся в этой среде, сильно влияют на работу ПК. Интерфейс стандартного BIOS на многих материнских картах полностью или по большей части на английском языке, а всё управление происходит при помощи клавиатуры. Также само удобство пользования таким интерфейсом оставляет желать лучшего.

Вне зависимости от того, какой способ будет выбран, необходимо узнать пригоден ли процессор для данной процедуры и если да, то каков его предел.

Узнаём характеристики

Для просмотра характеристик ЦП и его ядер есть большое количество программ. В данном случае рассмотрим, как узнать «пригодность» к разгону при помощи AIDA64:

  1. Запустите программу, нажмите на иконку «Компьютер». Её можно найти либо в левой части окна, либо в центральной. После перейдите в «Датчики». Их расположение аналогично с «Компьютер».
  2. В открывшемся окне находятся все данные касательно температуры каждого ядра. Для ноутбуков нормальным показателем считается температура в 60 и менее градусов, для стационарных компьютеров 65-70.

Температура

Способ 1: AMD OverDrive

Данное ПО выпущено и поддерживается корпорацией AMD, отлично подходит для манипуляций с любым процессором от этого производителя. Распространяется полностью бесплатно и имеет понятный для обычного пользователя интерфейс. Важно заметить, что производитель не несёт никакой ответственности за поломку процессора во время ускорения при помощи его программы.

Способ 2: SetFSB

SetFSB – это универсальная программа, подходящая в равной степени как для разгона процессоров от AMD, так и от Intel. Распространяется бесплатно в некоторых регионах (для жителей РФ, после демонстрационного периода придётся заплатить 6$) и имеет незамысловатое управление. Однако, в интерфейсе отсутствует русский язык. Скачайте и установите данную программу и приступайте к разгону:

  1. На главной странице, в пункте «Clock Generator» будет вбит по умолчанию PPL вашего процессора. Если это поле пустое, то вам придётся узнать свой PPL. Для этого потребуется разобрать корпус и найти на материнской плате схему PPL. Как вариант, можно также детально изучить системные характеристики на сайте производителя компьютера/ноутбука.
  2. Если с первым пунктом всё нормально, то просто постепенно начните передвигать центральный ползунок для изменения частоты ядер. Чтобы ползунки стали активными, нажмите «Get FSB». Для увеличения производительности можно также отметить пункт «Ultra».
  3. Чтобы сохранить все изменения нажмите на «Set FSB».

Способ 3: Разгон через BIOS

Если по каким-то причинам через официальную, как и через стороннюю программу, не получается улучшить характеристики процессора, то можно воспользоваться классическим способом – разгоном при помощи встроенных функций BIOS.

Данный способ подходит только более-менее опытным пользователям ПК, т.к. интерфейс и управление в БИОСе могут оказаться слишком запутанными, а некоторые ошибки, совершенные в процессе, способны нарушить работу компьютера. Если вы уверены в себе, то проделайте следующие манипуляции:

  1. Перезагрузите компьютер и как только появится логотип вашей материнской платы (не Windows), нажмите на клавишу Del или клавиши от F2 до F12 (зависит от характеристик конкретной материнской платы).
  2. В появившемся меню найдите один из этих пунктов – «MB Intelligent Tweaker», «M.I.B, Quantum BIOS», «Ai Tweaker». Расположение и название напрямую зависят от версии БИОСа. Для перемещения по пунктам используйте клавиши со стрелочками, для выбора клавишу Enter.

БИОС

Настройка БИОС

Изменение частоты

Разгон любого процессора AMD вполне возможен через специальную программу и не требует каких-либо глубоких познаний. Если все меры предосторожности соблюдены, а процессор ускорен в разумных пределах, то вашему компьютеру ничего не будет угрожать.

Закрыть

Мы рады, что смогли помочь Вам в решении проблемы.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Закрыть

Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Читайте также: